$$5x-2y \le 75$$

ab cd

$$S = Pe^{rt}$$

$$APY = \left(1 + \frac{r}{n}\right)^n - 1$$

Math 1090 ~ Business Algebra

Section 5.1 Arithmetic and Geometric Sequences

Objectives:

- Distinguish between arithmetic and geometric sequences.
- Recognize a sequence in recursive form and in iterative form.
- Find the nth term of a sequence.
- Find the sum of n terms of a sequence.

Vocabulary

$$a_n = f(n)$$

Sequence: $\{a_n\}$ an ordered list of numbers that form a pattern. It's also a function with domain of natural numbers.

n = 2,3,.... $d \neq 0$

(Add the same number to get each of the next terms.)

$$n = 2,3,.... d \neq 0$$
 $a_n = da_{n-1} \text{ given } a_1$

(Multiply by the same number to get each of the next terms.)

* These formulas are recursive. (They depend on previous terms.)

 a_1 given

$$a_2 = 0 + d$$

$$a_3 = a_3 + d = (a_1 + d) + d$$

$$a_4 = a_3 + d_4 = a_1 + 2d$$

$$a_5 = a_0 + d = a_1 + 3d$$

$$a_n = Q_1 + (n-1)d$$

$$a_1$$
 given

$$a_2 = \mathbf{a}_1 \mathbf{d}$$

$$a_3 = a_2 d = (a_1 d)d = a_1 d$$

$$a_3 = a_2 d = (a_1 d)d = a_1 d^2$$

 $a_4 = a_3 d = (a_1 d^2)d = a_1 d^3$

$$a_5 = a_4 d = a_1 d^4$$

$$a_{l} = a_{l} d^{s}$$

$$(a_n = Q_1 d^{n-1})$$
 Seq.

* These formulas are iterative. (They don't depend on previous terms.) (aka direct)

Ex 1: Classify as arithmetic or geometric and give the next three terms of each sequence.

a)
$$10, 7, 4, 1, ...$$
 $-3 - 3 - 3$

avithmetic seq.
 $d = -3$

Ex 2: Find a formula for the nth term of each of these.

a) an arithmetic sequence where

$$a_1 = 2$$
 and $d = -3$
 $a_1 = 2$ and $d = -3$
 $a_2 = 3$ and $a_3 = 3$
 $a_1 = 2$ and $a_4 = 3$
 $a_1 = 3$ and $a_4 = 3$
 $a_1 = 3$ and $a_4 = 3$
 $a_1 = 3$ and $a_2 = 3$ and $a_4 = 3$

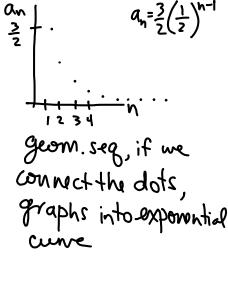
b) a geometric sequence where

$$a_1 = -10 \text{ and } d = 2$$

$$-(0, -70, -40, -80, -160, ...$$

$$a_n = a_1 d^{n-1}$$

$$a_n = -10(2^{n-1})$$
WARNING:


-10(2ⁿ) #-20ⁿ remember order of operations, namely that exponents are evaluated before multiplication!

Ex 3: Given
$$a_1 = 2$$
 and $a_8 = 23$, find the 50th term of this arithmetic sequence.

1)
$$a_n = a_1 + (n-1)d$$

 $a_n = 2 + (n-1)d$
Plug in $n = 8$:
 $23 = 2 + (8-1)d$
 $21 = 7d$
 $d = 3$
 $\Rightarrow a_n = 2 + (n-1)(3) = 3n-1$
 $a_n = 2 + (50-1)(3)$
 $a_n = 3n-1$
1) If we connect the pts for an arithmetic get a line!
 $a_n = 2 + (8-1)d$
 $a_n = 3 + (8-1)d$

Ex 4: Given $a_1 = \frac{3}{2}$ and $a_6 = \frac{3}{64}$, find the 20th term of the geometric sequence.

$$a_{n} = a_{1} d^{n-1}$$
 $a_{n} = \frac{3}{2} d^{n-1}$
 $n = 6$: $a_{k} = \frac{3}{2} (d^{k-1})$
 $\frac{1}{2} \frac{3}{3} \frac{3}{2} = d^{k}$
 $\frac{1}{3} \frac{1}{2} = d^{k}$
 $\frac{1}{3} \frac{1}{2} = d$
 $a_{n} = \frac{3}{2} (\frac{1}{2})^{n-1}$
 $a_{n} = \frac{3}{2} (\frac{1}{2})^{n-1}$

Arithmetic Sequence Sum

$$S_{12} = 2+5+8+11+14+17+20$$

+23+26+29+32+35=? d=3
($S_{12} = Sum \text{ of } | \frac{S^{1}}{2} | 2$
+wms of the sequence)
 $S_{12} = 2+5+8+\cdots+32+35$
 $S_{13} = 2+5+8+\cdots+32+35$

Geometric Sequence Sum

$$S_{n}-dS_{n}=a_{1}-a_{1}d^{n}$$

$$S_{n}(1-d)=a_{1}(1-d^{n})$$

$$S_{n}=a_{1}(1-d^{n})$$

$$S_{n}=$$

Ex 5: Find the sum of the first *n* terms of each of these.

a) 1, 10, 19, 28, ...
$$n = 100$$
 $+9 + 9 + 9$

Arithmetic sequence.

 $d = 9$, $a_1 = 1$, $a_{100} = a_1 + 99d$
 $= 1 + 99(9)$
 $S_{100} = (1 + 892)_{100}$
 $= 892$
 $= 89300 = 44,650$

b) 3, 6, 12, ... $n = 10$
 $d = 7$, $q_1 = 3$, $q_2 = 0$
 $d = 7$, $q_1 = 3$, $q_2 = 0$
 $d = 7$, $q_1 = 3$, $q_2 = 0$
 $d = 7$, $q_1 = 3$, $q_2 = 0$
 $d = 7$, $q_1 = 3$, $q_2 = 0$
 $d = 7$, $q_1 = 3$, $q_2 = 0$
 $d = 7$, $q_1 = 3$, $q_2 = 0$
 $d = 7$, $q_1 = 3$, $q_2 = 0$
 $d = 7$, $q_1 = 3$, $q_2 = 0$
 $d = 7$, $q_1 = 3$, $q_2 = 0$
 $d = 7$, $q_1 = 3$, $q_2 = 0$
 $d = 7$, $q_1 = 3$, $q_2 = 0$
 $d = 7$, $q_1 = 3$, $q_2 = 0$
 $d = 7$, $q_1 = 3$, $q_2 = 0$
 $d = 7$, $q_1 = 3$, $q_2 = 0$
 $d = 7$, $q_1 = 3$, $q_2 = 0$
 $d = 7$, $q_1 = 3$, $q_2 = 0$
 $d = 7$, $q_1 = 3$, $q_2 = 0$
 $d = 7$, $q_1 = 3$, $q_2 = 0$
 $d = 7$, $q_1 = 3$, $q_2 = 0$
 $d = 7$, $q_1 = 3$, $q_2 = 0$
 $d = 7$, $q_1 = 3$, $q_2 = 0$
 $d = 7$, $q_1 = 3$, $q_2 = 0$
 $d = 7$, $q_1 = 3$, $q_2 = 0$
 $d = 7$, $q_1 = 3$, $q_2 = 0$
 $d = 7$, $q_1 = 3$, $q_2 = 0$
 $d = 7$, $q_1 = 3$, $q_2 = 0$
 $d = 7$, $q_1 = 3$, $q_2 = 0$
 $d = 7$, $q_1 = 3$, $q_2 = 0$
 $d = 7$, $q_1 = 3$, $q_2 = 0$
 $d = 7$, $q_1 = 3$, $q_2 = 0$
 $d = 7$, $q_1 = 3$, $q_2 = 0$
 $d = 7$, $q_1 = 3$, $q_2 = 0$
 $d = 7$, $q_1 = 3$, $q_2 = 0$
 $d = 7$, $q_1 = 3$, $q_2 = 0$
 $d = 7$, $q_1 = 3$, $q_2 = 0$
 $d = 7$, $q_1 = 3$, $q_2 = 0$
 $d = 7$, $q_1 = 3$, $q_2 = 0$
 $d = 7$, $q_1 = 3$, $q_2 = 0$
 $d = 7$, $q_1 = 3$, $q_2 = 0$
 $d = 7$, $q_1 = 3$, $q_2 = 0$
 $d = 7$, $q_1 = 3$, $q_2 = 0$
 $d = 7$, $q_1 = 3$, $q_2 = 0$
 $d = 7$, $q_1 = 3$, $q_2 = 0$
 $d = 7$, $q_1 = 3$, $q_2 = 0$
 $d = 7$, $q_1 = 3$, $q_2 = 0$
 $d = 7$, $q_1 = 3$, $q_2 = 0$
 $d = 7$, $q_1 = 3$, $q_2 = 0$
 $d = 7$, $q_1 = 3$, $q_2 = 0$
 $d = 7$, $q_1 = 3$, $q_2 = 0$
 $d = 7$, $q_1 = 3$, $q_2 = 0$
 $d = 7$, $q_1 = 3$, $q_2 = 0$
 $d = 7$, $q_1 = 3$, $q_2 = 0$
 $d = 7$, $q_1 = 3$, $q_2 = 0$
 $d = 7$, $q_1 = 3$, $q_2 = 0$
 $d = 7$, $q_1 = 3$, $q_2 = 0$
 $d = 7$, $q_1 = 3$, $q_2 = 0$
 $d = 7$, $q_1 = 3$, $q_2 = 0$
 $d = 7$, $q_1 = 3$, $q_2 = 0$
 $d =$

b) 3, 6, 12, ...
$$n = 10$$

gramatric seq.

 $d = 2$, $q_1 = 3$, $q_2 = 10$
 $S_{10} = \frac{3(1-2^{10})}{1-2}$
 $= \frac{3(1-1024)}{-1}$
 $= 3069$