

Math 1090 ~ Business Algebra

Section 4.3 Logarithmic Functions

Objectives:

- Identify the logarithmic function as the inverse of an exponential function.
- Translate between exponential and logarithmic form.
- Determine the domain of a logarithmic function.
- Sketch transformations of a logarithmic function.

For $a>0, a \neq 1$, the logarithmic function $\mathrm{y}=\log _{a} x$ has domain $x>0$, base a and is defined by $a^{y}=x$. 乙 \quad bread as
$a>0, a \neq 1$

$$
y=\log _{a} x \Leftrightarrow a^{y}=x
$$

$$
\text { "log base } a \text { of } x "
$$

ex from past:

$$
3.5=15 \Longleftrightarrow 15 \div 3=5
$$

Ex 1:Write $8=2^{3}$ in logarithmic form.

$$
\begin{aligned}
& 2^{3}=8 \Leftrightarrow \log _{2} 8=3 \\
& a=2 \\
& y=3 \\
& x=8
\end{aligned}
$$

Ex 2: Rewrite $\log _{3}\left(\frac{1}{27}\right)=-3$ in exponential form.

$$
\begin{aligned}
& a=3 \\
& x=\frac{1}{27} \\
& y=-3
\end{aligned} \quad 3^{-3}=\frac{1}{27}
$$

Ex 3: Evaluate

$$
y=\log _{a} x \Leftrightarrow a^{y}=x
$$

a) $\log _{5}\left(\frac{1}{25}\right)=-2$
b) $\log _{7} 49=2$

$$
S^{?}=\frac{1}{25}
$$

$$
7^{?}=49
$$

c) $\log _{2}\left(16^{-1}\right)=\log _{2}\left(2^{-4}\right)=-4$

$$
16^{-1}=\left(2^{4}\right)^{-1}=2^{-4}
$$

Ex 4: Graph and state the domain.
a) $y=\log x \quad \begin{aligned} & \text { domain } \\ & \end{aligned}$

b) $y=-\log _{3} x$

Remember: (1exponential curves go through $(0,1) \Rightarrow \log$ curves go though $(1,0)$
(2) exp. curves have $H A: y=0$ \log curves have $V A: x=0$:
($a>1$)

Ex 5: Graph $y=e^{x}$ and $y=\ln x$. Discuss characteristics of inverse functions demonstrated by the graph.
inverse fo graphs are mirror reflections across line $y=x$

x	e^{x}
0	$1=e^{0}$
1	$e=e^{1}$

x	$\ln x$
1	0
e	1

Ex 6: Evaluate these expressions.
a) $e^{\ln 5}=5$
b) $\log _{4} 4^{a}=a$
c) $\ln e^{5}=5$
d) $9^{\log _{9} 11}=11$

