

Math 1090 ~ Business Algebra

Section 4.2 Exponential Functions

Objectives:

- Identify and evaluate exponential functions.
- Evaluate the natural base e and graph natural exponential functions.
- Sketch transformations of an exponential function.
- Use an exponential function in a business application.

An exponential function has a variable in the exponent and a constant base.

$$
\text { ex } 5^{x}=f(x)
$$

If $a \in \mathbb{R}, a>0$ and $a \neq 1$, then $y=f(x)=a^{x}$ is an exponential function with base a.
(note: if $a=1$, we get $y=11^{x}$ which is always 1, Graphs of exponential functions and $y=1$ is a line, not an exponential

x	y
0	$1=2^{0}$
1	$2=2^{1}$
2	$4=2^{2}$
-1	$\frac{1}{2}=2^{-1}$
-2	$\frac{1}{4}=2^{-2}$

Notice

- all the y-values are positive
- when we let $x \rightarrow-\infty$, we have HA of $y=0$

Ex 2: Label these as either power functions or exponential functions.
a) $y=2^{x} \quad E$
b) $y=e^{2 x}$
c) $y=-e^{2}$
P
(we could
say it's
power
fo of
degree
0) constant
constr. base
variable exponent
d) $y=-x^{2}-x^{3}$
e) $y=\left(\frac{1}{3}\right)^{x}+1$

$$
p
$$

$$
\begin{aligned}
& E \\
& =\left(\frac{1}{3}\right)^{x}+1
\end{aligned}
$$

Ex 3: Simplify (these are exponential expressions)
a) $\frac{4^{2-x}}{4^{3+x}}$

$$
=(4)^{2-x-(3+x)}
$$

$$
=4^{-1-2 x}
$$

notice:

$$
\begin{aligned}
4^{-1-2 x} & =4^{-(1+2 x)} \\
& =\frac{1}{4^{1+2 x}}
\end{aligned}
$$

b) $\left(2^{3 x}\right)^{(x-2)}$

$$
\begin{aligned}
& =2^{3 x(x-2)} \\
& =2^{3 x^{2}-6 x}
\end{aligned}
$$

Af you need to review rules of exponents, look in review section of video page

Ex 4: If $\$ 10,000$ is invested for t years at 10% interest, compounded continuously, the future value will be $S=10,000 e^{0.10 t}$. What will this account be worth in 5 years?

$$
\begin{aligned}
& t=5 \text { yrs } \\
& S=10,000 e^{0.10(5)} \simeq^{\$} 16,487.21
\end{aligned}
$$

