

# Math 1090 ~ Business Algebra 

Section 4.1 Inverse Functions

Objectives:

- Determine if a function has an inverse.
- Determine if two functions are inverses of each other.
- Find the inverse of a one-to-one function.

Inverse Functions
An inverse function basically "undoes" what the original function did to the input, $x$.

Notation: $f^{-1}(x)$ is read " $f$ inverse of $x$."

$$
f^{-1}(f(x))=f\left(f^{-1}(x)\right)=x
$$

Ex 1: Are these functions inverses of each other?

$$
f(x)=5 x-1 \quad g(x)=\frac{x+1}{5}
$$

check: Is $f(g(x))<x$ ? (Or is $g(f(x))=x$ ?)

$$
\begin{aligned}
f(g(x))=f\left(\frac{x+1}{5}\right) & =8\left(\frac{x+1}{8}\right)-1 \\
& =x+1-1 \\
& =x
\end{aligned}
$$

$\Rightarrow f$ and $g$ are inverse fur.
extra check: $g(f(x))=g(5 x-1)$

$$
=\frac{(5 x-1)+1}{5}=\frac{5 x}{8}=x
$$

Does every function have an inverse? No! A function that has an inverse must pass the horizontal line test (when graphed).

One-to-one: Every input has exactly one output and every output has exactly one input.

Graphically, an inverse function is the mirror image of the original function across the line, $y=x$.

Ex 2: Find the inverse of $f(x)=4(x-1)^{3}$.

$$
\begin{equation*}
f^{-1}(x)=\sqrt[3]{\frac{x}{4}}+1 \tag{2}
\end{equation*}
$$

(1) -1
(3) $\times 4$

Ex 3: Find the inverse of $f(x)=\sqrt[3]{\frac{x+1}{2 x+3}}$.

$$
\begin{aligned}
& y=\sqrt[3]{\frac{x+1}{2 x+3}} \\
& x=\sqrt[3]{\frac{y+1}{2 y+3}} \\
&(2 y+3) x^{3}=\frac{y+1}{(2 y+3)}(2 y+3) \\
& 2 x^{3} y+3 x^{3}=y+1 \\
& 2 x^{3} y-y=1-3 x^{3} \\
& y\left(2 x^{3}-1\right)=1-3 x^{3} \\
& y=\frac{1-3 x^{3}}{2 x^{3}-1}=f^{-1}(x)
\end{aligned}
$$


averse graph passes horiz. line
test $\Rightarrow$ it's invertible line test $\Rightarrow$ it's a fin

Strategy to find an inverse of a function.
a) "Pants" Technique

- can only use if $x$ shows up only once in the fun.
- undo things in opposite order in which they were done
b) Standard Technique
- switch $x$ and $y$
- solve for $y$ interns of $x$

Ex 4: Does $y=x^{2}$ have an inverse function? Can we restrict the domain so it does have an inverse function?

it passes vert. line test
$\Rightarrow$ it is a $\mathrm{fn}_{n}$ but it dues NOT pass honiz.
line test

$\Rightarrow$ it's NOT invertible this passes vert. and honiz. line tests $\Rightarrow$ it's invertible

Ex 5: Are these inverses of each other? $f(x)=2 \sqrt{x}-1 \quad g(x)=\frac{1}{4}(x+1)^{2}$


$\frac{\text { Note }}{\sqrt{(x+1)^{2}}}$
$=x+1$

$$
\begin{aligned}
& f(g(x))=f\left(\frac{1}{4}(x+1)^{2}\right)=2 \sqrt{\frac{1}{4}(x+1)^{2}}-1 \\
& =2\left(\frac{1}{2}\right)(|x+1|)-1 \\
& \text { IF } x+1 \\
& =|x+1|-1 \\
& \text { is positive } \\
& \Rightarrow \text { we need } \\
& =x+1-1 \text { if } x \geq-1 \\
& |x+1|=x+1 \\
& =x \vee
\end{aligned}
$$

$$
\begin{array}{r}
\Leftrightarrow x+1 \geq 0 \\
x \geq-1
\end{array}
$$

$\Rightarrow$ if $x \geq-1$ for $g(x)$, then $f$ and $g$ are inverses.

