$$
A P Y=\left(1+\frac{r}{n}\right)^{n}-1
$$

Math 1090 ~ Business Algebra

Section 3.7 Combinations of functions

Objectives:

- Form compositions of two functions.
- Determine the domain of the composite function.
- Perform arithmetic of functions.

Two functions can be combined to for a new function in these ways.

- addition $(f+g)(x)=f(x)+g(x)$
- subtraction $(f-g)(x)=f(x)-g(x)$
- multiplication $(f \cdot g)(x)=f(x) \cdot g(x)$
- division $\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}$
- composition $(f \circ g)(x)=f(g(x)) \quad$ " f of g of $x^{\prime \prime}$ (nested function)
Ex 1 Given $\quad f(x)=2 x+5 \quad g(x)=\frac{1}{x^{3}}$
a) $(f \circ g)(x)$

$$
=f(g(x))
$$

"inside out" "outside in"

$$
\begin{array}{l|l}
f\left(\frac{1}{x^{3}}\right) & 2(g(x))+5 \\
=2\left(\frac{1}{x^{3}}\right)+5 & =2\left(\frac{1}{x^{3}}\right)+5
\end{array}
$$

c) $(g \circ f)(1)$

$$
\text { b) } \begin{aligned}
& (f+g)(1) \\
= & f(1)+g(1) \\
= & (2 \cdot 1+5)+\left(\frac{1}{1^{3}}\right) \\
= & 7+1=8
\end{aligned}
$$

d) $\left(\frac{f}{g}\right)(x)$
$=\frac{f(x)}{g(x)}=\frac{(2 x+5)}{\frac{1}{x^{3}}}\left(\frac{x^{3}}{x^{3}}\right)$
$=\frac{2 x^{4}+5 x^{3}}{1}$
$=2 x^{4}+5 x^{3}$

$$
f(\rho)=\theta^{2}-1
$$

Ex 2: Given $\quad f(x)=x^{2}-1 \quad g(x)=\frac{x}{2} \quad h(x)=\sqrt{x-1}$, find

$$
\text { a) } \begin{aligned}
& (h \circ f)(x) \\
= & h(f(x)) \\
= & h\left(x^{2}-1\right) \\
= & \sqrt{\left(x^{2}-1\right)-1}=\sqrt{x^{2}-2}
\end{aligned}
$$

b) $(g-h)(1)$

$$
\begin{aligned}
& =g(1)-h(1) \\
& =\frac{1}{2}-\sqrt{1-1} \\
& =\frac{1}{2}-0=\frac{1}{2}
\end{aligned}
$$

c) $(h f)(3)$
$=h(3) \cdot f(3)$
$=\sqrt{3-1}\left(3^{2}-1\right)$

$$
=\sqrt{2}(8)=8 \sqrt{2}
$$

$$
\text { d) } \begin{aligned}
& g(h(x)) \\
= & \frac{h(x)}{2} \\
= & \frac{\sqrt{x-1}}{2}
\end{aligned}
$$

e) $h(f(g(x)))$
$=h\left(f\left(\frac{x}{2}\right)\right)$

$$
f(x)=x^{2}-1
$$

$$
g(x)=\frac{x}{2}
$$

$$
h(x)=\sqrt{x-1}
$$

$$
=h\left(\left(\frac{x}{2}\right)^{2}-1\right)
$$

$$
\begin{aligned}
& =h\left(\frac{x^{2}}{4}-1\right) \\
& ={" g l o b^{\prime}}^{4}
\end{aligned}
$$

$$
=\sqrt{\left(\frac{x^{2}}{4}-1\right)-1}
$$

$$
=\sqrt{\frac{x^{2}}{4}-2}
$$

Ex 3: For these functions, find $g(h(x))$ and its domain.

$$
g(x)=\frac{5}{x} \quad h(x)=\sqrt{x-1}
$$

domain: $x \neq 0 \quad(g(x))$

$$
g\left(h(x)=\frac{5}{h(x)}=\frac{5}{\sqrt{x-1}} \quad \begin{array}{l}
\text { domain: } \\
x>1
\end{array}\right.
$$

Ex 4: The daily cost of producing x units in a manufacturing process is $C(x)=11 x+350$. The number of units produced in t hours during a day is given by $x(t)=10 t$ for $0 \leq t \leq 8$. Find, simplify and interpret $C(x(t))$.

$$
\begin{aligned}
C(x(t)) & =C(10 t) \\
& =11(10 t)+350 \\
& =110 t+350
\end{aligned}
$$

notice:

- this is now a in of t only
- describes cost for a given \# of hours worked
ex if we work 5 hrs,
cost is $C=110(5)+350$

$$
=550+350 \$ 900
$$

