

Definition
Rational Function $f(x)=\frac{n(x)}{d(x)} \quad$ ex $\quad f(x)=\frac{3 x+5}{x^{2}-1}$
where $n(x)$ and $d(x)$ are polynomials.
(2)

$$
g(x)=\frac{1}{x^{3}+2 x}
$$

How to graph a rational function

1) find the domain
all allowable x-values
a) find VA
line $x=b, b$ is the x-value that makes the den. zero
b) find HA (and numb. not $y=c$, where c is the zero)
"end behavior" y-value (i.e. When x is huge) x-intercepts: $(d, 0)$ y-inter sept: $(0, p)$
2) Plot intercept points and at least one point on all sides of the vertical asymptotes.
3) Fill in the graph with smooth curves that approach the asymptotes.
(2) $g(x)=\frac{x+3}{3 x^{2}+5 x-7}$
as x gets huge, $x \rightarrow \pm \infty$ we get $g(x) \sim \frac{x}{3 x^{2}}=\frac{1}{3 x} \rightarrow 0$

$$
\Rightarrow H A: \quad y=0
$$

Ex 1: Analyze and graph.
a) $f(x)=\frac{2+x}{1-x}$
domain: $x \neq 1$
VA: $x=1$
HA: $y=-1$
as $x \rightarrow \pm \infty$,

$$
f(x) \sim \frac{x}{-x}=-1
$$

x-intercepts: $(-2,0) \quad 0=\frac{2+x}{1-x}$
y-interrupt: $(0,2)$
$y=2+0$$\quad \begin{aligned} & 0=2+x \\ & x=-2\end{aligned}$

$$
y=\frac{2+0}{1-0}=2 \quad \begin{gathered}
0=2+x \\
x=-2
\end{gathered}
$$

b) $f(x)=\frac{10}{x^{2}+2}$
domain: $x \in R$
VA: none
$H A: y=0$
as $x \rightarrow \pm \infty$
$f(x) \sim \frac{10}{x^{2}} \rightarrow 0$
$\left(\pm 1, \frac{10}{3}\right) \quad y=\frac{10}{1+2}$

pt on right of VA:

$$
(2,-4) \quad f(2)=\frac{2+2}{1-2}=-4
$$

Ex 2: Analyze and graph. $g(x)=\frac{x-3}{2 x^{2}-5 x-3}=\frac{x-3}{(2 x+1)(x-3)}$

