$$
A P Y=\left(1+\frac{r}{n}\right)^{n}-1
$$

Math 1090 ~ Business Algebra

Section 3.3 Quadratic Business Applications

Objectives:

- Set up and solve quadratic equations as they apply to business situations.

Ex 1: If the supply function for a commodity is $p=q^{2}+8 q+20$ and the demand function is $p=100-4 q-q^{2}$, find the equilibrium quantity and the equilibrium price.

S (1) $p=q^{2}+8 q+20$
D (2) $p=100-4 q-q^{2}$
use substitution:

$$
q^{2}+8 q+20=100-4 q-q^{2}
$$

$$
\frac{2 q^{2}+12 q-80}{2}=\frac{0}{2}
$$

equilibrium pt:

$$
(4,68)
$$

$$
\begin{aligned}
& q^{2}+6 q-40=0 \\
& (q+10)(q-4)=0 \\
& q+10=0 \text { or } q-4=0 \\
& q=10 \quad q=4
\end{aligned}
$$

(1)

$$
\begin{aligned}
p & =4^{2}+8(4)+20 \\
& =16+32+20 \\
& =68
\end{aligned}
$$

Ex 2: For the last example, if an $\$ 8.00$ tax is placed on production and passed through the supplier, find the new equilibrium point.
supply: $p=q^{2}+8 q+20+8$
demand: (2) $p=100-4 q-q^{2}$

$$
\begin{aligned}
& q^{2}+8 q+28=100-4 q-q^{2} \\
& 2 q^{2}+12 q-72=0 \\
& 2\left(q^{2}+6 q-36\right)=0 \\
& q^{2}+6 q-36=0 \quad \text { (not factorable) } \\
& q=\frac{-6 \pm \sqrt{6^{2}-4(1)(-36)}}{2(1)} \\
& \quad=\frac{-6 \pm \sqrt{36+4(36)}}{2}=\frac{-6 \pm \sqrt{36(5)}}{2} \\
& \\
& =\frac{-6 \pm 6 \sqrt{5}}{2}=\frac{2(-3 \pm 3 \sqrt{5})}{2}
\end{aligned}
$$

$$
q=-3 \pm 3 \sqrt{5}
$$

note: $-3-3 \sqrt{5}$ is negative, but $q \geqslant 0$.
Son: $q=-3+3 \sqrt{5} \simeq 3.7$

$$
\begin{aligned}
\Rightarrow^{1} p= & (-3+3 \sqrt{5})^{2}+8(-3+3 \sqrt{5})+28 \\
& \cong 71.42
\end{aligned}
$$

\Rightarrow equil. pt. $\sim(3.7, \$ 71.42)$

Break-Even Points and Maximization
Ex 3: If a company has total costs $C(x)=1600+1500 x$ and the total revenue is $R(x)=(1600-x) x$, find the break even points.
(1)

$$
y=R(x)=-x^{2}+1600 x
$$

(2) $y=C(x)=1500 x+1600$

$$
R(x)=C(x) \Leftrightarrow P(x)=0
$$

$$
-x^{2}+1600 x=1500 x+1600
$$

note:

$$
0=x^{2}+1500 x-1600 x+1600
$$

$$
1600=80(20)
$$

$0=x^{2}-100 x+1600$
$0=(x-80)(x-20)$
$0=x-80$ or $0=x-20$
$x=80$ or $x=20$

$$
\begin{aligned}
& y=c(80)=1600+1500(80)=\$ 121,600 \\
& y=c(20)=1600+1500(20)=\$ 31,600
\end{aligned}
$$

break-even pts (profit is zero)

$$
\begin{aligned}
& \text { and }(20, \$ 31,600)
\end{aligned}
$$

Ex 4: Find the maximum revenue given $R(x)=1600 x-x^{2}$.

$$
R(x)=-x^{2}+1600 x
$$

vert tex: $x=\frac{-b}{2 a}=\frac{-1600}{2(-1)}=800$
\Rightarrow max revenue occurs at $x=800$

$$
\begin{aligned}
R(800)= & -(800)^{2}+1600(800) \\
& =640,000
\end{aligned}
$$

Ex 5: Suppose a company has fixed costs of $\$ 4,320,000$ and variable costs of $0.8 x-4000$ dollars per unit, where $x=$ the number of units produced. Suppose further that its selling price is 2000-1.2 x dollars per unit.
a) Find the break even point.

$$
\begin{aligned}
& C(x)=4,320,000+(0.8 x-4000) x \\
& C(x)=0.8 x^{2}-4000 x+4,320,000
\end{aligned}
$$

$$
R(x)=(2000-1.2 x) x=-1.2 x^{2}+2000 x
$$

$$
P(x)=R(x)-C(x)=-1.2 x^{2}+2000 x-0.8 x^{2}+4000 x-4320000
$$

$$
=-2 x^{2}+6000 x-4320000
$$

$$
=-2\left(x^{2}-3000 x+2,160,000\right)=0
$$

$$
-2(x-1800)(x-1200)=0 \Leftrightarrow x=1800, x=1200
$$

$$
x=1820, \quad R(1800)=-1.2\left(1800^{2}\right)+2000(1800)=-288,000
$$

$$
x=1200 \quad R(1200)=-1.2\left(1200^{2}\right)+2000(1200)=672,000
$$

b) Find the maximum revenue.
break even pt:

$$
\begin{aligned}
& R(x)=-1.2 x^{2}+2000 x \\
& \left.\begin{array}{l}
\text { max } \\
\text { at } \\
\text { parabola } \\
\text { vertex } \\
\end{array} \quad \begin{array}{l}
\text { max } R\left(\frac{-2000}{2(-1.2)}=\frac{2500}{3}\right.
\end{array}=833.33, \$ 672,000\right) \\
&
\end{aligned}
$$

c) Find the maximum profit and the price that yields it.

$$
\begin{aligned}
& \quad \begin{aligned}
& P(x)=-2 x^{2}+6,000 x-4,320,000 \\
& \text { vertex: } \quad x=\frac{-6000}{2(-2)}=1500 \\
& \text { max profit }=P(1500)=-2\left(1500^{2}\right)+6000(1500) \\
&=\$ 180,000 \\
& \text { selling price }=2000-1.2(1500) \\
&=\$ 200
\end{aligned}
\end{aligned}
$$

