

Math 1090 ~ Business Algebra

Section 3.2 Parabolas: Quadratic Equations in Two Variables

Objectives:

- Identify a quadratic function, including the dependent and independent variables.
- Sketch a graph of a quadratic function.
- Identify the vertex, the axis of symmetry, concavity, y-intercept and roots of a quadratic function.

A quadratic function in two variables can be written in the form

$$
y=f(x)=a x^{2}+b x+c \quad a \neq 0, a, b, c \in \mathbb{R}
$$

ex

a, b, c constants
x is the independent variable

How can we find the vertex?

$$
y=a x^{2}+b x+c
$$

check: plug in $x=0$

$$
\Rightarrow y=a(0)+b(0)+c=c
$$

so parabola goes though pt $(0, c)$.
$?=-b$ let $y=c$. We get

$$
\begin{aligned}
C & =a x^{2}+b x+c \\
0 & =a x^{2}+b x \\
0 & =x(a x+b) \\
x=0 & \text { or } a x+b=0 \\
a x & =-b \\
x & =-\frac{b}{a}
\end{aligned}
$$

\Rightarrow vertex is halfway between $x=0$ and $x=\frac{-b}{a}$ i.e. vertex occurs when

$$
x=\frac{1}{2}\left(\frac{-b}{a}\right)=\frac{-b}{2 a}
$$

vertex: $\left(\frac{-b}{2 a}, f\left(\frac{-b}{2 a}\right)\right)^{2 a} \quad y=a x^{2}+b x+c$

Ex 1: For $y=-2 x^{2}-4 x+6$ (parabola, aka.
a) Find the vertex.
quadratic fin)

$$
\begin{aligned}
& a=-2, b=-4 \\
& x=\frac{-b}{2 a}=\frac{-(-4)}{2(-2)}=-1 \quad \text { vertex: (-1,8) } \\
& y=-2(-1)^{2}-4(-1)+6=-2+4+6=8
\end{aligned}
$$

b) Is the vertex a min or max point?
$a=-2<0 \Rightarrow$ parabola is concave down
\Rightarrow vertex is max pt

Ex 2: For $y=x^{2}-6 x+9, \quad a=1, b=-6, c=9$
a) Find the vertex. $(3,0)$

$$
\begin{aligned}
& \text { a) Find the vertex. }(3,0) \\
& x=\frac{-6}{2 a}=\frac{6}{2}=3 \quad y=3^{2}-6(3)+9
\end{aligned}
$$

b) Is it a min or max point? $y=0$

$$
a=1>0 \text { \& vertex }
$$

c) Find the zeros/roots of the graph.

$$
\begin{aligned}
& 0=x^{2}-6 x+9 \\
& 0=(x-3)(x-3) \\
& x-3=0 \quad \Leftrightarrow x=3
\end{aligned}
$$

d) Find the axis of symmetry

$$
x=3
$$

e) Find the y-intercept.

$$
\begin{aligned}
& y=0^{2}-6(0)+9=9 \\
& (0,9)
\end{aligned}
$$

Ex 3: For $y=-x^{2}+4 x+5, \quad a=-1, b=4, c=5$
a) Find the vertex.

$$
\begin{aligned}
& \begin{array}{ll}
x=\frac{-b}{2 a}=\frac{-4}{2(-1)}=2 \quad y=-\left(2^{2}\right)+4(2)+5= & -4+8+5 \\
\text { Is this parabola concave up or concave down? }
\end{array}=9
\end{aligned}
$$

b) Is this parabola concave up or concave down?

$$
a=-1<0 \Rightarrow \text { concave down }
$$

c) Find the x and y-intercepts of the graph.

$$
\left.\begin{array}{l|l}
x-\text { int }:(-1,0)(5,0) & y \text {-int: } \\
\left(0=-x^{2}+4 x+5\right)(-1) & (0,5) \\
0=x^{2}-4 x-5 \\
0=(x-5)(x+1) & y=0+0+5 \\
x=5,-1
\end{array} \right\rvert\, \begin{aligned}
& y=5 \\
& (0,5)
\end{aligned}
$$

d) Find the axis of symmetry

$$
x=2
$$

e) Sketch the graph

Ex 4: For the parabola from example $1, y=-2 x^{2}-4 x+6$, sketch the graph.
vertex $(-1,8)$ concave down coefficient of x^{2} is -2

Ex 5: If 100 ft of fencing is used to enclose a rectangular yard, find the area function. Find the dimensions of the rectangle that maximizes the area.

$$
\begin{aligned}
P=100 f t= & 2 x+2 y \\
\Leftrightarrow \quad 100 & =2 x+2 y \\
50 & =x+y
\end{aligned}
$$

$$
\begin{gathered}
A=A(x)=x y \\
A=x(50-x) \\
A(x)=50 x-x^{2} \\
A(x)=-x^{2}+50 x
\end{gathered}
$$

\Rightarrow area is a quadratic f_{n} of x. and leading coefficient is negative
1 \Rightarrow we have concave down parabola
\Rightarrow max area occurs at vertex
vertex: ${ }^{a t} x=\frac{-b}{2 a}=\frac{-50}{2(-1)}=25$
dimensns of rectangle: $x=25, y=50-25=25$

$$
25 \mathrm{ft} \times 25 \mathrm{ft}
$$

