

 $APY = (1 + \frac{r}{n})^n - 1$

Section 3.1 Quadratic Equations in One Variable

Objectives:

- Identify a quadratic equation in one variable.
- Apply the Zero Product Property to solve quadratic equations in one variable.
- Apply four strategies for solving a quadratic equation in one variable.

Definition: A Quadratic Equation can be written in the form

 $ax^2 + bx + c = 0$, where *a*, *b*, $c \in \mathbb{R}$, $a \neq 0$ 9,6, c are constants Strategies to Solve Ex 1: Solve $5x^2 - 32 = x^2 + 8$ 1. Square Root Technique $4x^{2}-32=8$ Only works if we have X written use $4x^2 = 40$ ()once in the guadratic egn. 2. Factor Technique $x^{2} = 10$ · only works sometimes · <u>must</u> have zero on x= +10 one side of eqn. 3. Completing the Square Ex 2: Solve 2x(5x + 6) = 16·always works Use 10x2+12x=16 10x2+12x-16=0 $2(5x^{+}6x^{-}8)=0$ 4. Quadratic Formula ·always work 5 - 8 = -40if $ax^2+bx+c=0$ 10.-4 then $x = -b \neq \sqrt{b^2 - 4ac}$ $2\left(\underbrace{5\times^{2}+10\times-4\times-8}_{\times}\right)=0$ Za $z\left(5x\left(\frac{x+2}{x+2}\right)-q\left(\frac{x+2}{x+2}\right)\right)=0$ 2(x+2)(5x-4)=0x+2=0 SX-4=0 $\begin{array}{c} x = -2 \\ & 5x = 4 \\ & x = \frac{4}{5} \end{array}$

Ex 4: Solve
$$x^2 + 4 = 6x$$

Ex 5: Solve
$$\frac{1}{x-10} - \frac{1}{x-9} = 1$$
 (valianal eqn)
 $(x-10)(x-9)\left(\frac{1}{x-10} - \frac{1}{x-9}\right) = 1(x-10)(x-9)$
 $(x-10)(x-9) - \frac{(x-10)(x-9)}{(x-9)} = (x-10)(x-9)$
 $(x-10) = x^2 - 9x - 10x + 90$
 $x-9 - (x-10) = x^2 - 9x - 10x + 90$
 $y = x^2 - 19x + 89$
 $x = 1, b = -19, c = 89$
 $x = 19 \pm \sqrt{(-19)^2 - 9(1)(89)}$
 $x = 19 \pm \sqrt{5}$