

Math 1090 ~ Business Algebra

Section 2.4 Inverse Matrices

Objectives:

- Use Gauss-Jordan techniques to find an inverse of a matrix, if it exists
- Use inverse matrices to solve systems of equations.

Inverse Matrix

A-1, read "A inverse," is a matrix such that

- $\mathbf{A}^{-l} \cdot \mathbf{A} = \mathbf{I} = \mathbf{A} \cdot \mathbf{A}^{-l}$
- A⁻¹ can only exist for a square matrix

Ex 1: Find A⁻¹ for

a)
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

Method to find A⁻¹ for A

- 1. If A is not square, A⁻¹ does not exist (DNE).
- 2. If A is square,
 - a) Augment A with the identity matrix.
 - b) Perform elementary row operations on the augmented matrix until the left side is I, the identity matrix.
 - c) What is on the right side is A^{-1} .

1

b)
$$A = \begin{bmatrix} 5 & 4 \\ 0 & 2 \end{bmatrix}$$

Ex 2: Find A⁻¹ if possible.

a)
$$A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ -5 & 1 & 0 & 1 \\ 3 & -2 & 7 & 0 \end{bmatrix}$$

b)
$$A = \begin{bmatrix} 7 & -4 & 6 \\ 7 & -4 & 5 \\ 2 & -1 & 1 \end{bmatrix}$$

Ex 3: Use A⁻¹ from Example 2(b) to solve this system of equations.

$$7x - 4y + 6z = 1$$

 $7x - 4y + 5z = 0$
 $2x - y + z = 7$

To solve

AX=B

(where A is an nxn matrix

X is an *nx1* column vector of variables

B is an *nx1* column vector of constants)

we can left-multiply both sides by A⁻¹.

$$\mathbf{A}^{-1}\mathbf{A}\mathbf{X} = \mathbf{A}^{-1}\mathbf{B}$$

$$IX = A^{-1}B$$
.