

Math 1090 ~ Business Algebra

Section 2.4 Inverse Matrices

Objectives:

- Use Gauss-Jordan techniques to find an inverse of a matrix, if it exists.
- Use inverse matrices to solve systems of equations.

Inverse Matrix
A^{-1}, read "A inverse," is a matrix such that

- $\mathrm{A}^{-1} \cdot \mathrm{~A}=\mathrm{I}=\mathrm{A} \cdot \mathrm{A}^{-1} \quad(I=$ identity matrix that's same size as A)

Ex 1: Find A^{-1} for

Method to find A^{-1} for A

1. If A is not square, A^{-1} does not exist (DNE).
2. If A is square,
a) Augment A with the identity matrix.
b) Perform elementary row operations on the augmented matrix until the left side is I, the identity matrix.
c) What is on the right side is A^{-1}.

$$
\begin{aligned}
& \text { b) } \mathrm{A}=\left[\begin{array}{ll}
5 & 4 \\
0 & 2
\end{array}\right] \\
& \begin{aligned}
A^{-1} & =\frac{1}{5(2)-4(0)}\left[\begin{array}{cc}
2 & -4 \\
0 & 5
\end{array}\right] \\
& =\frac{1}{10}\left[\begin{array}{cc}
2 & -4 \\
0 & 5
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{5} & \frac{-2}{5} \\
0 & \frac{1}{2}
\end{array}\right]
\end{aligned} \\
& \text { check: } \\
& \underset{(2 \cdot(2)(2)(2) 2}{A A^{-1}}=\left[\begin{array}{ll}
5 & 4 \\
0 & 2
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{5} & -\frac{2}{5} \\
0 & \frac{1}{2}
\end{array}\right] \\
& =\left[\begin{array}{ll}
5\left(\frac{1}{5}\right)+4(0) & 5\left(\frac{2}{3}\right)+4\left(\frac{1}{2}\right) \\
0\left(\frac{1}{5}\right)+2(0) & 0\left(\frac{-2}{5}\right)+2\left(\frac{1}{2}\right)
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=I
\end{aligned}
$$

Ex 2: Find A^{-1} if possible.
a) $\mathrm{A}=\left[\begin{array}{cccc}1 & 3 & 5 & 7 \\ -5 & 1 & 0 & 1 \\ 3 & -2 & 7 & 0\end{array}\right]$
3×4 matrix which is NDT square

$$
\Rightarrow A^{-1} \quad D N E
$$

$$
\begin{aligned}
& \underset{\substack{\text { b) } \\
\text { matrix } \\
\text { (} \\
\text { m }}}{ }=\left[\begin{array}{lll}
7 & -4 & 6 \\
7 & -4 & 5 \\
2 & -1 & 1
\end{array}\right] \\
& \int_{(-3)}^{7}\left[\begin{array}{ccc:ccc}
7 & -4 & 6 & 1 & 0 & 0 \\
7 & -4 & 5 & 0 & 1 & 0 \\
2 & -1 & 1 & \vdots & 0 & 0 \\
-6 & 3 & -3 & 0 & 0 & -3
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& C\left[\begin{array}{ccc::ccc}
1 & -1 & 3 & 1 & 0 & -3 \\
0 & 3 & -16 & -7 & 1 & 21 \\
0 & 1 & -5 & -2 & 0 & 7
\end{array}\right] \stackrel{(-3)}{C}\left[\begin{array}{ccc:ccc}
0 & -3 & 15 & 6 & 0 & -21 \\
0 & -1 & 3 & 1 & 0 & -3 \\
0 & 3 & -16 & -7 & 0 & 7 \\
0 & 1 & 21
\end{array}\right] \\
& (-1)\left[\begin{array}{ccc:ccc}
1 & -1 & 3 & 1 & 0 & -3 \\
0 & 1 & -5 & -2 & 0 & 7 \\
0 & 0 & -1 & -1 & 1 & 0
\end{array}\right]\left[\begin{array}{ccc:ccc}
1 & -1 & 3 & 1 & 0 & -3 \\
0 & 1 & -5 & -2 & 0 & 7 \\
0 & 0 & 1 & 1 & -1 & 0
\end{array}\right] \\
& (5)\left[\begin{array}{ccc:ccc}
1 & 0 & -2 & -1 & 0 & 4 \\
0 & 1 & -5 & -2 & 0 & 7 \\
0 & 0 & 1 & 1 & -1 & 0 \\
0 & 0 & 5 & 5 & -5 & 0
\end{array}\right](2)\left[\begin{array}{ccc:ccc}
1 & 0 & -2 & -1 & 0 & 4 \\
0 & 1 & 0 & 3 & -5 & 7 \\
0 & 0 & 1 & 1 & -1 & 0 \\
0 & 0 & 2 & 2 & -2 & 0
\end{array}\right] \\
& \left.\underbrace{\left[\begin{array}{ccc:ccc}
1 & 0 & 0 & 1 & -2 & 4 \\
0 & 1 & 0 & \vdots & 3 & -5 \\
0 & 0 & 1 & \vdots & -1 & -1
\end{array}\right]}_{3 \times 3} \underbrace{-1} 0 \right\rvert\, A^{-1}=\left[\begin{array}{ccc}
1 & -2 & 4 \\
3 & -5 & 7 \\
1 & -1 & 0
\end{array}\right]
\end{aligned}
$$

A Note: If, in this process, you get a 000 now on left side, it means $A^{-1} D N E$.

Ex 3: Use A^{-1} from Example 2(b) to solve this system of equations.

$$
\begin{aligned}
& 7 x-4 y+6 z=1 \quad\left[\begin{array}{ccc:c}
7 & -4 & 6 & : \\
7 & -4 & 5
\end{array}\right] \quad \text { To solve } \\
& \begin{array}{l|lll:l}
7 x-4 y+5 z=0
\end{array} \left\lvert\, \begin{array}{llll}
7 & -4 & 5 & 0
\end{array} \quad \quad \mathrm{AX}=\mathrm{B}\right.
\end{aligned}
$$

$$
\begin{aligned}
& A X=B \quad \text { (a matrix en) } \\
& {\left[\begin{array}{ccc}
7 & -4 & 6 \\
7 & -4 & 5 \\
2 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
7
\end{array}\right]} \\
& x=A^{-1} B \\
& \begin{aligned}
x=\left[\begin{array}{ccc}
1 & -2 & 4 \\
3 & -5 & 7 \\
1 & -1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
7
\end{array}\right] & =\left[\begin{array}{c}
1(1)+-2(0)+4(7) \\
3(1)+5(0)+7(7) \\
3 \times 1 \\
3
\end{array}\right) \\
& =\left[\begin{array}{c}
1+0+28 \\
3+0+9 \\
1+0+0
\end{array}\right]=\left[\begin{array}{c}
29 \\
52 \\
1
\end{array}\right]
\end{aligned} \\
& \text { Solve } 7 x-4 y+6 z=5 \\
& 7 x-4 y+5 z=1 \\
& 2 x-y+z=-1 \\
& \Rightarrow B=\left[\begin{array}{c}
5 \\
1 \\
-1
\end{array}\right]
\end{aligned}
$$

(note: A is same as above $\rightarrow A^{-1}$ is same
$X=A^{-1} B \quad$ also.)

$$
=\left[\begin{array}{lll}
1 & -2 & 4 \\
3 & -5 & 7 \\
1 & -1 & 0
\end{array}\right]\left[\begin{array}{c}
5 \\
1 \\
-1
\end{array}\right]=\left[\begin{array}{ccc}
5-2-4 \\
15-5-7 \\
5 & -1+0
\end{array}\right]=\left[\begin{array}{c}
-1 \\
3 \\
4
\end{array}\right]
$$

