

Math 1090 ~ Business Algebra

Section 2.2 Matrix Multiplication

Objectives:

- Determine whether two matrices can be multiplied together.
- Multiply two matrices
- Write an Identity matrix of the proper size.

Definitions

Matrix Multiplication AB
Given $\mathrm{A}($ size $m \times n$) and $\mathrm{B}($ size $n \times p) \mathrm{AB}$ is an $m \times p$ matrix with $i j$ entry given by $a_{i l} b_{l j}+a_{i 2} b_{2 j}+\ldots+a_{i n} b_{n j}$. i.e. the product/sum of the $i^{t h}$ row of A with the $j^{t h}$ column of B

Identity Matrix I
I is always a square matrix which has 1 in each diagonal entry and zeros everywhere else.

Properties of Matrix Multiplication

1. $(\mathrm{AB}) \mathrm{C}=\mathrm{A}(\mathrm{BC})$
2. $\mathrm{A}(\mathrm{B}+\mathrm{C})=\mathrm{AB}+\mathrm{AC}$
3. $(\mathrm{B}+\mathrm{C}) \mathrm{A}=\mathrm{BA}+\mathrm{CA}$
4. $(A B)^{T}=B^{T} A^{T}$
$\mathrm{AB} \neq \mathrm{BA}$

Ex 1: Given $A=\left[\begin{array}{lll}1 & 0 & 4 \\ 5 & 1 & 2\end{array}\right]$ and $B=\left[\begin{array}{cc}1 & 2 \\ 3 & -2 \\ -1 & 0\end{array}\right]$
Find $A B$ and $B A$, if possible.

Ex 2: Is $\left(A A^{T}\right)^{T}=A^{T} A$?

Ex 3: Given $\mathrm{A}=\left[\begin{array}{ccc}0 & 1 & 3 \\ 2 & 0 & 1 \\ 0 & 0 & -4\end{array}\right]$, find A^{2}.

Ex 4: Solve for x.

$$
\left[\begin{array}{c}
-5 \\
10 \\
-19
\end{array}\right]+\left[\begin{array}{c}
-2 x \\
13 \\
-8
\end{array}\right]+\left[\begin{array}{l}
-8 \\
-4 \\
-7
\end{array}\right]=\left[\begin{array}{c}
5 \\
19 \\
-34
\end{array}\right]
$$

Ex 5: Solve for x and y.

$$
\left[\begin{array}{cc}
1 & 3 \\
-1 & 5
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
11 \\
5
\end{array}\right]
$$

