

Vocabulary	<u>Definitions</u>
matrix	A = B
entry	A^{T}
scalar	
	0 matrix
order (size)	
Square matrix	
Column or row vector	

Ex 1: For A =
$$\begin{bmatrix} 3 & 2 & 1 \\ 4 & 0 & -2 \\ 6 & 1 & 5 \end{bmatrix}$$

- a) size =
- b) a_{13} =

c) $A^T =$

d) first column vector =

Ex 2: Given A =
$$\begin{bmatrix} 1 & 3 & 5 & 7 \\ -5 & 1 & 0 & 1 \\ 3 & -2 & 7 & 0 \end{bmatrix}$$

- a) What size (order) is A?
- b) What is a_{24} ? a_{31} ?
- c) Write a zero matrix the same size as A.
- d) Find A^{T} $A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ -5 & 1 & 0 & 1 \\ 3 & -2 & 7 & 0 \end{bmatrix}$
- e) Find -A

Ex 3: Given A =
$$\begin{bmatrix} 1 & 3 & 1 & 0 \\ 4 & 2 & 1 & 5 \\ -1 & 0 & -2 & 0 \end{bmatrix} B = \begin{bmatrix} 2 & 2 & 5 & 1 \\ 0 & 0 & -4 & -3 \\ 1 & 4 & -1 & 2 \end{bmatrix} C = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ -1 & 0 & 3 \\ 4 & 5 & 0 \end{bmatrix}$$

a) Find
$$2A + B$$

Matrix Addition

$$A + B =$$

b) A -
$$3C^{T}$$
=

Scalar Multiplication

Ex 4: Given
$$A = \begin{bmatrix} 4 \\ 1 \\ 3 \end{bmatrix}$$
 $B = \begin{bmatrix} 2 & 9 & 1 \end{bmatrix}$ $C = \begin{bmatrix} -3 & 1 & 5 \end{bmatrix}$ $D = \begin{bmatrix} -2 \\ 3 \\ 0 \end{bmatrix}$

a)
$$B^T + D =$$

b) B -
$$(A-D)^{T}$$
 =

c)
$$(2C + A^{T})^{T} =$$