

## Math 1090 ~ Business Algebra

Section 2.1 Basic Operations with Matrices

Objectives:

- Identify elements of a matrix.
- Differentiate between a scalar and a matrix.
- Identify a square matrix.
- Identify the size of a matrix.
- Determine the transpose of a matrix.
- Write a zero matrix.
- Identify Row or Column Vectors.
- Perform matrix addition and multiplication of a matrix by a scalar.
$\underset{\underset{\text { Vocabulary }}{3 \times 2}}{\underset{\text { Va nd }}{ }}$ ex $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right]$
matrix: an ordered
away of numbers; usually denoted by capital letters
entry ex $\quad a_{11}=1 \quad a_{12}=2$

$$
a_{21}=3
$$

$a_{i j}=$ the $i^{\text {th }} a_{21}$ now, $j^{\text {th }}$ column scalar entry in matrix $A$
Constant
(that we can multiply by a matrix) order (size)

Definitions
$\mathrm{A}=\mathrm{B}$ the two matrices are same size w/ all the same entries

$$
B=\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right]
$$

$A^{T}$ (read "A transpose")
exchange rows and columns

$$
A^{\top}=\left[\begin{array}{lll}
1 & 3 & 5 \\
2 & 4 & 6
\end{array}\right] \quad \begin{aligned}
& 2 \times 3 \\
& \text { matrix }
\end{aligned}
$$

0 matrix a matrix (of any size) filed $\omega / z \operatorname{zos}$

$$
\operatorname{ex} C=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

where $m=$ \# of rows $\& n=$ \# of columns
Square matrix a matrix that has same H of rows
ex $P=\left[\begin{array}{cc}1 & 3 \\ -4 & 2\end{array}\right]$ columns; $n \times n$ matrix
Column or row vector
a matrix that has only one now or one column
ex $D=\left[\begin{array}{l}3 \\ 0 \\ 9\end{array}\right] \begin{gathered}\left.\text { (column } \begin{array}{l}\text { vector) }\end{array} \quad \begin{array}{llll}-1 & 2 & 10 & 15\end{array}\right] \\ \text { (row vector) }\end{gathered}$
$3 \times 1$

Ex 1: For $A=\left[\begin{array}{ccc}3 & 2 & (1 \\ 4 & 0 & -2 \\ 6 & 1 & 5\end{array}\right]$
a) size $=3 \times 3$
b) $a_{13}=1$
c) $A^{T}=\left[\begin{array}{ccc}3 & 4 & 6 \\ 2 & 0 & 1 \\ 1 & -2 & 5\end{array}\right]$
(first wow, third column entry)
d) first column vector $=\left[\begin{array}{l}3 \\ 4 \\ 6\end{array}\right]$

Ex 2: Given $A=\left[\begin{array}{cccc}1 & 3 & 5 & 7 \\ -5 & 1 & 0 & 1 \\ 3 & -2 & 7 & 0\end{array}\right]$
a) What size (order) is A? $3 \times 4$
b) What is $a_{24}$ ? $a_{31}$ ? 3
c) Write a zero matrix the same size as A. $Z=\left[\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
d) $\operatorname{Find} A^{T}=\left[\begin{array}{ccc}1 & -5 & 3 \\ 3 & 1 & -2 \\ 5 & 0 & 7 \\ 7 & 1 & 0\end{array}\right]$

$$
A=\left[\begin{array}{cccc}
1 & 3 & 5 & 7 \\
-5 & 1 & 0 & 1 \\
3 & -2 & 7 & 0
\end{array}\right]
$$

$$
-A=-1 \cdot A \quad\left[\begin{array}{cccc}
-1 & -3 & -5 & -7 \\
5 & -1 & 0 & -1 \\
-3 & 2 & -7 & 0
\end{array}\right]
$$

Ex 3: Given $\mathrm{A}=\left[\begin{array}{cccc}1 & 3 & 1 & 0 \\ 4 & 2 & 1 & 5 \\ -1 & 0 & -2 & 0\end{array}\right] \quad \mathrm{B}=\left[\begin{array}{cccc}2 & 2 & 5 & 1 \\ 0 & 0 & -4 & -3 \\ 1 & 4 & -1 & 2\end{array}\right] \quad \begin{gathered}\mathrm{C}= \\ 4 \times 3\end{gathered}\left[\begin{array}{ccc}1 & 1 & 1 \\ 2 & 2 & 2 \\ -1 & 0 & 3 \\ 4 & 5 & 0\end{array}\right]$
a) Find $2 \mathrm{~A}+\mathrm{B}$

$$
\begin{aligned}
& =\left[\begin{array}{cccc}
2 & 6 & 2 & 0 \\
8 & 4 & 2 & 10 \\
-2 & 0 & -4 & 0
\end{array}\right]+\left[\begin{array}{cccc}
2 & 2 & 5 & 1 \\
0 & 0 & -4 & -3 \\
1 & 4 & -1 & 2
\end{array}\right] \\
& =\left[\begin{array}{cccc}
4 & 8 & 7 & 1 \\
8 & 4 & -2 & 7 \\
-1 & 4 & -5 & 2
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { b) } \mathrm{A}-3 \mathrm{C}^{\mathrm{T}}= \\
& A=\left[\begin{array}{cccc}
1 & 3 & 1 & 0 \\
4 & 2 & 1 & 5 \\
-1 & 0 & -2 & 0
\end{array}\right] C=\left[\begin{array}{ccc}
1 & 1 & 1 \\
2 & 2 & 2 \\
-1 & 0 & 3 \\
4 & 5 & 0
\end{array}\right] \\
& C^{T}=\left[\begin{array}{cccc}
1 & 2 & -1 & 4 \\
1 & 2 & 0 & 5 \\
1 & 2 & 3 & 0
\end{array}\right] \\
& A-3 C^{\top}=\left[\begin{array}{cccc}
1 & 3 & 1 & 0 \\
4 & 2 & 1 & 5 \\
-1 & 0 & -2 & 0
\end{array}\right]-\left[\begin{array}{cccc}
3 & 6 & -3 & 2 \\
3 & 6 & 0 & 15 \\
3 & 6 & 9 & 0
\end{array}\right] \\
& =\left[\begin{array}{cccc}
-2 & -3 & 4 & -12 \\
1 & -4 & 1 & -10 \\
-4 & -6 & -11 & 0
\end{array}\right] \\
& c A=\left[c a_{i j}\right] \\
& \text { the matrix we get } \\
& \text { when we multiply } \\
& \text { every entry of } A \\
& \text { by } c
\end{aligned}
$$

(1) Matrix Addition
$\mathrm{A}+\mathrm{B}=$

- we can only add matrices that are the same size! add cowesponding elements/entries together
(2) Scalar Multiplication

Ex 4: Given $\mathrm{A}=\left[\begin{array}{l}4 \\ 1 \\ 3\end{array}\right] \quad \mathrm{B}=\left[\begin{array}{lll}2 & 9 & 1\end{array}\right] \quad \mathrm{C}=\left[\begin{array}{lll}-3 & 1 & 5\end{array}\right] \quad \mathrm{D}=\left[\begin{array}{c}-2 \\ 3 \\ 0\end{array}\right]$
a) $\mathrm{B}^{\mathrm{T}}+\mathrm{D}=\left[\begin{array}{l}2 \\ 9 \\ 1\end{array}\right]+\left[\begin{array}{c}-2 \\ 3 \\ 0\end{array}\right]=\left[\begin{array}{c}0 \\ 12 \\ 1\end{array}\right]$
b)

$$
\begin{aligned}
& B-(A-D)^{\mathrm{T}}=\left[\begin{array}{lll}
2 & 9 & 1
\end{array}\right]-\left(\left[\begin{array}{l}
4 \\
1 \\
3
\end{array}\right]-\left[\begin{array}{c}
-2 \\
3 \\
0
\end{array}\right]\right)^{\top} \\
&=\left[\begin{array}{lll}
2 & 9 & 1
\end{array}\right]-\left(\left[\begin{array}{c}
6 \\
-2 \\
3
\end{array}\right]\right)^{\top}=\left[\begin{array}{lll}
2 & 9 & 1
\end{array}\right]-\left[\begin{array}{lll}
6 & -2 & 3
\end{array}\right] \\
&=\left[\begin{array}{lll}
-4 & 11 & -2
\end{array}\right]
\end{aligned}
$$

c)

$$
\begin{aligned}
\left(2 \mathrm{C}+\mathrm{A}^{\mathrm{T}}\right)^{\mathrm{T}} & \left.=\left(\begin{array}{lll}
2 & -3 & 1
\end{array}\right]+\left[\begin{array}{l}
4 \\
1 \\
3
\end{array}\right]^{\top}\right)^{\top} \\
& =\left(\left[\begin{array}{lll}
-6 & 2 & 10
\end{array}\right]+\left[\begin{array}{lll}
4 & 1 & 3
\end{array}\right]\right)^{\top} \\
& =\left[\begin{array}{lll}
-2 & 3 & 13
\end{array}\right]^{\top} \\
& =\left[\begin{array}{c}
-2 \\
3 \\
13
\end{array}\right]
\end{aligned}
$$

