

Math 1090 ~ Business Algebra

Section 1.8 Graphical Linear Programming

Objectives:
Maximize or minimize linear functions with constraints using graphical means.

Graphical Linear Programming

Linear Programming

Closed and Bounded Region

Constraints

Feasible Region

Optimal Solutions

Graphical Linear Programming Procedures

1. Graph all constraints on the same axes.
2. Shade in the feasible region
3. Find and label vertices.
4. Plug in the corner points to the objective function to determine which gives the maximum or minimum as desired.

Ex 1: Find the minimum and maximum values of the objective function, $f=4 x+3 y$ on the feasible region given by

$$
\begin{aligned}
& 2 x+3 y \leq 12 \\
& 4 x-2 y \leq 8 \\
& x \geq 0, \quad y \geq 0
\end{aligned}
$$

Ex 2: Minimize $g=22 x-17 y$ subject to these constraints.

$$
8 x+5 y \geq 100
$$

$$
12 x+25 y \geq 360
$$

$$
x \geq 0, \quad y \geq 0
$$

Ex 3: A contractor builds two types of homes. The Carolina requires one lot, $\$ 160,000$ capital and 160 worker-days of labor. The Savannah requires one lot, \$240,000 capital and 160 worker-days of labor. The contractor owns 300 lots and has $\$ 48,000,000$ available capital and 43,200 worker-days of labor. The profit on the Carolina is $\$ 40,000$ and on the Savannah, it's $\$ 50,000$. How many of each type of home should be built to maximize profit? What is the maximum profit?

