

$\sin ^{2} u+\cos ^{2} u=1$

$\sin 2 u=2 \sin u \cos u$

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

$c^{2}=a^{2}+b^{2}-2 a b \cos C$

Math 1060 ~ Trigonometry

8 Graphing Other Trigonometric Functions

Learning Objectives

In this section you will:

- Graph the tangent, cotangent, secant, and cosecant functions and their transformations. Identify the period and vertical asymptotes.
- Learn the properties of these functions, including domain and range; determine whether a function is even or odd.
- Recognize a function given the graph.
note:

$y=\tan x$ is an odd fun.

Vertical asymptotes:
where $\cos x=0$
Period:

$$
x= \pm \frac{\pi}{2}, \pm \frac{3 \pi}{2}, \pm \frac{5 \pi}{2},
$$

Domain: $n \in \mathbb{Z}$
all $\mathbb{R}_{\text {Range: }}^{\text {Domain: }} \boldsymbol{R}$ all \mathbb{R} (or $(-\infty, \infty)$)
Symmetry:
about origin Increasing/decreasing: increasing everywhere $y=\tan x$ is defined

$y=\cot x$ is an odd fun

Vertical asymptotes:
where $\sin x=0$

$$
x=0, \pm \pi, \pm 2 \pi, \ldots
$$

Period: π
Domain: $x \in \mathbb{R}$,

$$
x \neq n \pi, n \in \mathbb{Z}
$$

Range:
$y \in \mathbb{R}$
Symmetry: $(O R(-\infty, \infty))$
Symmetry:
about origin
Increasing/decreasing:
decreasing
wherever fou. is defined

$$
f(x)=\sec x=\frac{1}{\cos x}
$$

$(x=$ odd $\pi / 2$)) Vertical asymptotes:
where $\cos x=0$

$$
x=\frac{(2 n+1) \pi}{2}, n \in \mathbb{Z}
$$

Period:

$$
2 \pi
$$

Domain:

$$
x \neq(2 n+1) \pi \quad n \in \mathbb{Z}
$$

$(-\infty,-1] \cup \cup 1, \infty)$
Symmetry:
across y-axis
$\Rightarrow y=\sec x$ is even fun.

$$
f(x)=\csc x=\frac{1}{\sin x}
$$

Vertical asymptotes: where $\sin x=0$

$$
x=n \pi, \quad n \in \mathbb{Z}
$$

Period: 2π
Domain: $x \in \mathbb{R}$,

$$
x \neq n \pi, n \in \mathbb{Z}
$$

Range:
$(-\infty,-1] \cup[1, \infty)$
Symmetry:
about the origin
$\Rightarrow y=\csc x$ is odd fo.

Ex 1: List the transformations and sketch a graph.
$\int_{\text {impacts period }}^{f(x)=\sec (2 x)+1}$ and asymptotes

Asymptotes: $x=$ odd multiples
$x=\frac{(2 n+1) \pi}{\text { Horizontal shift: }}$ of $\frac{\pi}{4}$
$n \in \mathbb{Z}$ Horizontal shift
(n is Vertical shift:

any integer) I (up)

Ex 2: List the transformations for this function.

$$
f(x)=\tan \left(2 x-\frac{\pi}{2}\right)+1
$$

$$
\begin{gathered}
2 x-\frac{\pi}{2}=0 \\
2 x=\frac{\pi}{2}
\end{gathered}
$$

Period: $\frac{\pi}{2}$
Asymptotes:

$$
x=\frac{\pi}{4}
$$

Horizontal shift: $\frac{\pi}{4}(r i g h t)$
Vertical shift:

$$
1(u p)
$$

$V A$: $x=$ any integer Multiple of $\frac{\pi}{2}$

$$
x=\frac{n \pi}{2}, n \in Z
$$

Ex 3: See if you can recognize which of the functions are represented in the graphs below.
a) Draw the asymptotes and write an equation for each of these graphs, assuming there are no transformations.
b) Write each function that is a co-function as a transformation of another function. \quad (only $y=\csc x$ and $y=\cot x)$

(a) $y^{\prime}=\cot ^{\prime} x$

(a) $y=\sec x$

(a) $y=\csc x^{\prime}$
(b) $y=\sec \left(x-\frac{\pi}{2}\right)$
(shift $\sec x=y$ curve to right by $\pi / 2$)

