

$\sin ^{2} u+\cos ^{2} u=1$

$\sin 2 u=2 \sin u \cos u$

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

$$
c^{2}=a^{2}+b^{2}-2 a b \cos C
$$

Math 1060 ~ Trigonometry

7 Graphing The Cosine and Sine Functions

Learning Objectives

In this section you will:

- Graph the cosine and sine functions.
- Learn the properties of the cosine and sine functions, including domain and range, period, phase shift, amplitude and vertical shift.
- Identify cosine and sine functions as periodic functions.
- Determine whether a periodic function is even or odd.
- Use properties to graph periodic functions.
- Write an equation from the graph of a sine or cosine function.

$$
f(x)=\sin x
$$

http://tube.geogebra.org/student/m45354?mobile=true

$$
-1 \leq \sin x \leq 1
$$

Graph of $f(x)=\sin x$

$$
f(x)=\cos x
$$

$\underline{\text { http://tube.geogebra.org/student/m45354?mobile=true }}$

How can you graph $y=2 \sin \left(x-\frac{\pi}{3}\right)+1$?
This is a transformation of the basic $y=\sin x$ curve.
It may help to remember transformations to one of the algebraic functions.
How does the graph of $y=-3(x+2)^{2}-1$ relate to the graph of $y=x^{2}$?
 $y=-3(x+2)^{2}-1$

In general, remember the effect of a, h and k on the graph of $y=x^{2}$. $y=a(x-h)^{2}+k$
(h, k) new vertex $\binom{h=$ horiz. shift }{$k=$ vert. shift } $|a|=$ rest." stretch" factor $\binom{$ if $|a|>1$, stretch }{ if $|a|<1$, shrink } $\left\{\begin{array}{l}\text { if } a>0 \text {, no vert. reflection (concave up) } \\ \text { if } a<0,\end{array}\right.$ $\{$ if $a<0$, vert. reflection (concave down)

$$
y=A \sin (b(x-h))+k
$$

What effect do A, b, h and k have on the graph of trigonometric functions?

Let's look at it one part at a time: $y=A \sin x$
multiplying by A (on the outside of the f_{n}) causes a vertical stretch/ shrink
the horizontal axis of oscillation;
it's half the distance from highest y-value to lowest y-value.
Ex 1: Graph each of these.

$$
y=3 \sin x \quad A=3 \quad y=-2 \cos x \quad A=2
$$

vert. stretch by factor
of 2 and vert. reflection

Periodic Functions
A function is periodic if there is a real number p so that $f(x+p)=f(x)$. The smallest positive number p, if it exists is called the period of f.

$$
y=\sin (b x) \quad \Rightarrow \text { period }=2 \pi\left(\frac{1}{b}\right)=\frac{2 \pi}{b}
$$

- Period = horiz. distance before graph repeats itself.
(normally for $y=\sin x$ and $y=\cos x$ period $=2 \pi$)
Ex 2: Graph each of these.

$$
y=\sin (2 x)
$$

$$
\underset{y=\cos \left(\frac{1}{2} x\right)}{\text { period }}=\frac{2 \pi}{1 / 2}=4 \pi
$$

$$
\text { period }=\frac{2 \pi}{2}=\pi
$$

$$
\text { amplitude }=1 \quad(0,0)
$$

amplitude $=1$
$(0,1)$

$$
y=\sin (x-h)
$$

- Horizontal shift (phase shift) $=h$

Ex 3: Graph each of these.

$$
y=\sin (x+\pi)
$$

horiz. shift $=-\pi$

amp. $=1 \quad$ Note:
period $=2 \pi$
this is same as $y=-\sin x$
note:

$$
\begin{gathered}
x-h=0 \\
x=h
\end{gathered}
$$

$y=\cos \left(x-\frac{\pi}{2}\right)$
hour. shift $=\frac{\pi}{2}$

$a m p=1$
Note: this is same $y=\sin x$

$$
y=\sin (b(x-h))
$$

- Period $=\frac{2 \pi}{b}$
- Horizontal shift $=h$

Ex 4: Graph each of these.

WARNING:
must be in form $y=\sin (b(x-h))$ to decide hone shift.

$a m p=1$

$$
\begin{aligned}
& \left.y=\cos \left(\left(\frac{1}{2}\right) x+\frac{\pi}{2}\right)\right) \\
& y=\cos \left(\frac{1}{2}(x+\pi)\right)
\end{aligned}
$$

$$
\text { period }=\frac{2 \pi}{1 / 2}=4 \pi, \begin{gathered}
\text { horit. } \\
\text { shift }
\end{gathered}
$$

amp $=1$

$$
y=\sin (x)+k
$$

$$
\text { Vertical Shift }=k
$$

Ex 5: Graph each of these.
$y=\sin x-2$
shift down 2

$a m p=1$
Period $=2 \pi$

So, when we graph a sine or cosine function there are these things to consider:

Ex 6: List the transformations of this function.

- Amplitude
- Period
- Phase shift (horizontal)
- Vertical shift

$$
y=3 \cos (2 x-\pi)+1=3 \cos \left(2\left(x-\frac{\pi}{2}\right)\right)+1
$$

Amplitude $3 \checkmark$
Period $\frac{2 \pi}{2}=\pi$
Phase shift (horizontal)

Vertical shift

$$
\frac{\pi}{2}(r i g h t)
$$

$$
I^{(u p)} v
$$

Ex 7: List the transformations of this function. $f(x)=-2 \sin (4 x-\pi)-2$.

$$
=-2 \sin \left(4\left(x-\frac{\pi}{4}\right)-2\right.
$$

Amplitude

$$
|-2|=2
$$

Period

$$
\frac{2 \pi}{4}=\frac{\pi}{2}
$$

Phase shift (horizontal)

$$
\frac{\pi}{4}(r i g h t)
$$

Vertical shift

$$
-2(\text { down })
$$

* reflection: vertical

Ex 8: Analyze the transformations and write a function equation of this graph using the cosine function and then one using the sine function.
(1) Period: $\pi=\frac{2 \pi}{2}$

Amplitude: 3

$$
\begin{aligned}
& \text { Horizontal shift: } 0 \\
& \text { Vertical shift: }
\end{aligned}
$$

(2) Paid $=\pi$

$$
a m p=3
$$

vertical shift $=1$
horiz. shift $=-\frac{\pi}{4}$

$$
y=3 \sin \left(2\left(x+\frac{\pi}{4}\right)\right)+1
$$

$$
x=-\frac{\pi}{4} \Leftrightarrow x+\frac{\pi}{4}=0
$$

Here are some applets in case you want to play with the transformation variables.
http://www.analyzemath.com/trigonometry/sine.htm
http://tube.geogebra.org/student/m45354?mobile=true

Here are instructions and the equation format from the text for graphing a periodic (sinusoidal) function.

For $\omega>0$, the functions	
$C(x)=A \cos (\omega x+\phi)+B$ and $S(x)=A \sin (\omega x+\phi)+B$	
- have period $\frac{2 \pi}{\omega}$	- have phase shift $-\frac{\phi}{\omega}$
- have amplitude $\|A\|$	- have vertical shift B

