

Determining Sine and Cosine

Consider the acute angle θ drawn in standard position.

$Q(x, y)$ is a point on the terminal side of θ which lies on the circle $x^{2}+y^{2}=r^{2}$.
$P\left(x^{\prime}, y^{\prime}\right)$ is a point on the terminal side of θ which lies on the Unit Circle.

Theorem: If $Q(x, y)$ is a point on the terminal side of an angle θ, plotted in standard position, which lies on the circle $x^{2}+v^{2}=r^{2}$, then

$$
\begin{aligned}
x=r \cos \theta \text { and } y=r \sin \theta . \quad \cos \theta & =\frac{x}{r}=\frac{x}{\sqrt{x^{2}+y^{2}}} \\
\sin \theta=\frac{y}{r} & =\frac{y}{\sqrt{x^{2}+y^{2}}}
\end{aligned}
$$

From these it is possible to determine all of the other four functions.

Ex 1: Determine the sine, secant and tangent of an angle which contains the point $Q(3,-2)$ when plotted in standard position.

Ex 2: If the terminal side of θ lies on the line $3 x-4 y=0$ in the third quadrant, find the values of the six trigonometric functions of θ by finding a point on the line.

Ex 3: Determine the radius of the circle of revolution for Salt Lake City, which is located at a latitude of $40.76^{\circ} \mathrm{N}$. Assume the radius at the equator to be 3960 miles.

$$
\theta=40.76^{\circ}
$$

