

Determining Sine and Cosine Consider the acute angle θ drawn in standard position.

Q(x,y) is a point on the terminal side of θ which lies on the circle $x^2 + y^2 = r^2$. P(x',y') is a point on the terminal side of θ which lies on the Unit Circle.

Theorem: If Q(x,y) is a point on the terminal side of an angle θ , plotted in standard position, which lies on the circle $x^2 + v^2 = r^2$, then $x = r \cos \theta$ and $y = r \sin \theta$.

$$\cos \theta$$
 and $y = r \sin \theta$.
 $\cos \theta = \frac{x}{r} = \frac{x}{\sqrt{x^2 + y^2}}$
 $\sin \theta = \frac{y}{r} = \frac{y}{\sqrt{x^2 + y^2}}$

From these it is possible to determine all of the other four functions.

Ex 1: Determine the sine, secant and tangent of an angle which contains the point Q(3, -2) when plotted in standard position.

Ex 2: If the terminal side of θ lies on the line 3x - 4y = 0 in the third quadrant, find the values of the six trigonometric functions of θ by finding a point on the line.

Ex 3: Determine the radius of the circle of revolution for Salt Lake City, which is located at a latitude of 40.76° N. Assume the radius at the equator to be 3960 miles.

