

The Trigonometric Functions

In addition to the sine and cosine functions, there are four more.

Trigonometric Functions: Suppose θ is an angle plotted in standard position and $P(x, y)$ is the point on the terminal side of θ which lies on the Unit Circle. The circular functions are defined as follows.

- The sine of θ, denoted $\sin (\theta)$, is defined by $\sin (\theta)=y$.
- The cosine of θ, denoted $\cos (\theta)$, is defined by $\cos (\theta)=x$.
- The tangent of θ, denoted $\tan (\theta)$, is defined by $\tan (\theta)=\frac{y}{x}$, provided $x \neq 0$.
- The cosecant of θ, denoted $\csc (\theta)$, is defined by $\csc (\theta)=\frac{1}{y}$, provided $y \neq 0$.
- The secant of θ, denoted $\sec (\theta)$, is defined by $\sec (\theta)=\frac{1}{x}$, provided $x \neq 0$.
- The cotangent of θ, denoted $\cot (\theta)$, is defined by $\cot (\theta)=\frac{x}{y}$, provided $y \neq 0$.

Ex 1: Assume θ is $\frac{\pi}{3}$ in this picture.
Find the six trigonometric functions of θ.

Ex 2: Determine the tangent values for the first quadrant and each of the quadrant angles on this Unit Circle.

Reciprocal and Quotient Identities

$$
\begin{aligned}
& \text { Reciprocal and Quotient Identities: } \\
& \text { - } \tan (\theta)=\frac{y}{x}=\frac{\sin (\theta)}{\cos (\theta)} \text {, provided } \cos (\theta) \neq 0 \text {; if } \cos (\theta)=0 \text { then } \tan (\theta) \text { is undefined. } \\
& \text { - } \cot (\theta)=\frac{x}{y}=\frac{\cos (\theta)}{\sin (\theta)} \text {, provided } \sin (\theta) \neq 0 \text {; if } \sin (\theta)=0 \text { then } \cot (\theta) \text { is undefined. } \\
& \text { - } \sec (\theta)=\frac{1}{x}=\frac{1}{\cos (\theta)} \text {, provided } \cos (\theta) \neq 0 \text {; if } \cos (\theta)=0 \text { then } \sec (\theta) \text { is undefined. } \\
& \text { - } \csc (\theta)=\frac{1}{y}=\frac{1}{\sin (\theta)} \text {, provided } \sin (\theta) \neq 0 \text {; if } \sin (\theta)=0 \text { then } \csc (\theta) \text { is undefined. }
\end{aligned}
$$

Ex 3: Find the indicated value, if it exists.
a) $\sec 30^{\circ}$
b) $\csc \frac{11 \pi}{6}$
c) $\cot (2)$
d) $\tan \theta$, where θ is any angle coterminal with 270°.
e) $\cos \theta$, where $\csc \theta=-2$ and $\frac{3 \pi}{2}<\theta<2 \pi$.

Generalized Reference Angle Theorem

The values of the trigonometric functions of an angle, if they exist, are the same, up to a sign, as the corresponding trigonometric functions of the reference angle.

More specifically, if α is the reference angle for θ, then $\cos \theta= \pm \cos \alpha$, $\sin \theta= \pm \sin \alpha$. The sign, + or - , is determined by the quadrant in which the terminal side of θ lies.

Ex 4: Determine the reference angle for each of these. Then state the cosine and sine and tangent of each.
a) -225°
b) $\frac{11 \pi}{6}$
c) $-\frac{3 \pi}{4}$

Finding Angles that Satisfy Cosine and Sine Equations

Ex 5: Find all of the angles on the unit circle which satisfy the given equation.
a) $\sin \theta=0$
b) $\cos \theta=-\frac{1}{2}$
c) $\sin \theta=\frac{\sqrt{2}}{2}$

Finding Angles that Satisfy Other Trigonometric Equations

Ex 6: Find all of the angles on the unit circle which satisfy the given equation.
a) $\tan \theta=-1$
b) $\sec \theta=2$
c) $\cot \theta=0$

