

The Trigonometric Functions

In addition to the sine and cosine functions, there are four more.

Trigonometric Functions: Suppose θ is an angle plotted in standard position and P(x, y) is the point on the terminal side of θ which lies on the Unit Circle. The circular functions are defined as follows.

- The sine of θ , denoted $\sin(\theta)$, is defined by $\sin(\theta) = y$.
- The cosine of θ , denoted $\cos(\theta)$, is defined by $\cos(\theta) = x$.
- The **tangent** of θ , denoted $\tan(\theta)$, is defined by $\tan(\theta) = \frac{y}{x}$, provided $x \neq 0$.
- The cosecant of θ , denoted $\csc(\theta)$, is defined by $\csc(\theta) = \frac{1}{y}$, provided $y \neq 0$.
- The secant of θ , denoted $\sec(\theta)$, is defined by $\sec(\theta) = \frac{1}{x}$, provided $x \neq 0$.
- The **cotangent** of θ , denoted $\cot(\theta)$, is defined by $\cot(\theta) = \frac{x}{y}$, provided $y \neq 0$.

Ex 1: Assume θ is $\frac{\pi}{3}$ in this picture.

Find the six trigonometric functions of θ .

Ex 2: Determine the tangent values for the first quadrant and each of the quadrant angles on this Unit Circle.

Reciprocal and Quotient Identities

Reciprocal and Quotient Identities

- $\tan(\theta) = \frac{y}{x} = \frac{\sin(\theta)}{\cos(\theta)}$, provided $\cos(\theta) \neq 0$; if $\cos(\theta) = 0$ then $\tan(\theta)$ is undefined.
- $\cot(\theta) = \frac{x}{y} = \frac{\cos(\theta)}{\sin(\theta)}$, provided $\sin(\theta) \neq 0$; if $\sin(\theta) = 0$ then $\cot(\theta)$ is undefined.
- $\sec(\theta) = \frac{1}{x} = \frac{1}{\cos(\theta)}$, provided $\cos(\theta) \neq 0$; if $\cos(\theta) = 0$ then $\sec(\theta)$ is undefined.
- $\csc(\theta) = \frac{1}{y} = \frac{1}{\sin(\theta)}$, provided $\sin(\theta) \neq 0$; if $\sin(\theta) = 0$ then $\csc(\theta)$ is undefined.

Ex 3: Find the indicated value, if it exists.

- a) sec 30°
- b) $csc \frac{11\pi}{6}$
- c) cot (2)

d) $tan \theta$, where θ is any angle coterminal with 270 °.

e) $\cos \theta$, where $\csc \theta = -2$ and $\frac{3\pi}{2} < \theta < 2\pi$.

f) $\sin \theta$, where $\tan \theta = \sqrt{3}$ and θ is in Q III.

Generalized Reference Angle Theorem

The values of the trigonometric functions of an angle, if they exist, are the same, up to a sign, as the corresponding trigonometric functions of the reference angle.

More specifically, if α is the reference angle for θ , then $\cos \theta = \pm \cos \alpha$, $\sin \theta = \pm \sin \alpha$. The sign, + or -, is determined by the quadrant in which the terminal side of θ lies.

- Ex 4: Determine the reference angle for each of these. Then state the cosine and sine and tangent of each.
- a) -225°

- b) $\frac{11\pi}{6}$
 - c) $\frac{3\pi}{4}$

Finding Angles that Satisfy Cosine and Sine Equations

Ex 5: Find all of the angles on the unit circle which satisfy the given equation.

a)
$$\sin \theta = 0$$

b)
$$\cos \theta = -\frac{1}{2}$$

b)
$$\cos \theta = -\frac{1}{2}$$
 c) $\sin \theta = \frac{\sqrt{2}}{2}$

Finding Angles that Satisfy Other Trigonometric Equations

Ex 6: Find all of the angles on the unit circle which satisfy the given equation.

a)
$$\tan \theta = -1$$

b)
$$\sec \theta = 2$$

c)
$$\cot \theta = 0$$