

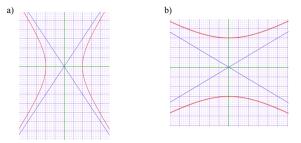
Ex 1: Given the points $F_1(-5,0)$ and $F_2(5,0)$, plot several points such that the difference of the distances from F_1 and F_2 to each point is 4. Draw the curve connecting the points.

Hyperbolas

General form: $Ax^2 + By^2 + Cx + Dy + E = 0$, where A and B have opposite signs.

Given: two points (foci) and a distance (c).

Definition: A hyperbola is the set of all points in a plane such that for each point on the hyperbola, the difference of its distances from two fixed points is constant.


Foci

Standard Form of an Equation of a Hyperbola with Center at (0,0)

The variables a, b and c have a special relationship.

Ex 2: Write the equation of these hyperbolas in standard form.

Ex 3: Determine the value of c for each hyperbola above and plot the foci.

<u>Translations of a Hyperbola</u> Standard Hyperbola center at (0,0)

Translated Hyperbola center at (h,k)

Ex 4: Sketch each of these curves and locate the foci.

$4x^2 - 9y^2 = 36$												
	-		-		-					-	-	
					-							
	••••	•••			•••				•••			

1	6(y+	-2,) ²	- 9	9(:	r-:	3) ²	2 =	= 3	6
_											
						-					
	ļ										

Ex 5: Write an equation and sketch each of these.

a) The hyperbola such that the center is (-2,3), one of the asymptotes passes through (1,4) and it is vertically oriented.

b) A hyperbola with vertices at (-4,3) and (2,3) and foci at (-6,3) and (4,3)

Ex 6: Write this equation in standard form, sketch it, including the foci.

 $x^2 - 9y^2 - 4x - 18y - 14 = 0$

 					 		÷
 	_		_				
							i
				·			

Eccentricity of a Hyperbola

e = c/a

Ex 7: Identify each of these equations as one of these: C - Circle E - Ellipse that is not a circle (longer in which direction) H - Hyperbola (facing which way) P - Parabola (facing which way) i) $9x^2 - 4y^2 - 36x + 8y - 4 = 0$ ii) $y^2 + 4x - 2y - 11 = 0$

iii) $16x^2 + 16y^2 + 64x - 32y - 176 = 0$

iv) $-9x^2 + 25y^2 - 54x - 50y - 281 = 0$

v) $9x^2 + 4y^2 - 18x + 16y - 11 = 0$

vi) $x^2 - 6x + 8y - 7 = 0$

vii) $2x^2 + 3y^2 + 12x + 24y + 60 = 0$