

$\sin ^{2} u+\cos ^{2} u=1$

$\sin 2 u=2 \sin u \cos u$

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

$c^{2}=a^{2}+b^{2}-2 a b \cos C$

Math 1060 ~ Trigonometry

26 Conic Sections: Parabolas

Learning Objectives

In this section you will:

- Learn the definition of a parabola in a plane.
- Know and use the standard equation of a parabola.
- Sketch the graph of a parabola.
- Determine the vertex, focus and directrix of a parabola.

Parabolas

A parabola is the set of points of equal distance from a given point and a given line.
The point is called the focus and the line is called the directrix.
Ex 1: Plot several points which are equidistant from F, the focus and d, the directrix.

Vocabulary for Parabolas

$$
V=\text { vert tex }
$$

Focus F

Directrix d
Axis of symmetry - Line \perp to d Latus rectum (focal chord) ecus
line segment to d, thru F, Connecting parabola length of focal chord $=|4 p|$

We can develop a formula for the parabola.
Let (x, y) be any point on the parabola.
Let F be at $(0, c)$ and the line L be at $y=-c$.

Standard Form of Parabolas with Vertex at $(0,0)$

Eqn: $\quad x^{2}=4 p y$ axis of : $x=0$
\qquad
Ex 2: Graph each of these.
a) $2 x^{2}=-4 y$
n

b) $3 y^{2}-12 x=0$

$$
\begin{aligned}
3 y^{2} & =12 x \\
y^{2} & =4 x
\end{aligned} \quad \Rightarrow p=1
$$

Eqn: $(x-h)^{2}=4 p(y-k)$
d: $\quad y=k-p$
sym. $\quad x=h$

$$
\begin{aligned}
& (y-k)^{2}=4 p(x-h) \\
& x=h-p \\
& y=k
\end{aligned}
$$

Ex 3: Graph each of these. You may need to complete the square on one of them to put it in standard form.
a) $(x-2)^{2}=8(y-1) \quad$ vertex $(2,1)$

$$
\begin{aligned}
& \text { b) } \begin{aligned}
& y^{2}-6 y=-4 x-11 \\
& y^{2}-6 y+9=-4 x-11+9 \\
&(y-3)^{2}=-4(x-2 \\
&(y-3)^{2}=-4\left(x+\frac{1}{2}\right)
\end{aligned}, ~
\end{aligned}
$$

$$
4 p=8 \Leftrightarrow p=2
$$

d: $y=1-2=-1$

$E:(2,3)$
axis of sym:

Ex 4: Find the equation of a parabola with the given information.
a) directrix at $y=-4$, vertex at $(4,-1)$ concave up parabola

$$
\begin{aligned}
& (x-h)^{2}=4 p(y-k) \\
& (x-4)^{2}=4 p(y+1) \\
& (x-4)^{2}=12(y+1)
\end{aligned}
$$

b) vertex at $(4,2)$, passing through $(-3,-4)$ with axis parallel to the x-axis.

either concave down or left, but axis II to x-axis
\Rightarrow parabola is concavele'ft

$$
\begin{aligned}
& (y-k)^{2}=4 p(x-h) \\
& (y-2)^{2}=4 p(x-4)
\end{aligned}
$$

plug in and $p t$:

$$
\begin{aligned}
(-4-2)^{2} & =4 p(-3-4) \\
36 & =4 p(-7) \\
9 & =-7 p \\
p & =-\frac{9}{7}
\end{aligned}
$$

