
$\sin ^{2} u+\cos ^{2} u=1$
$\sin 2 u=2 \sin u \cos u$
$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$

Math 1060 ~ Trigonometry

26.5 Circles

Learning Objectives

In this section you will:
In this section you will:
$c^{2}=a^{2}+b^{2}-2 a b \cos C$

- Define a circle in a plane.
- Determine whether an equation represents a circle.
- Graph a circle from a given equation.
- Determine the center and radius of a circle.
- Find the equation of a circle from stated properties.

A circle with center (h, k) and radius $r>0$ is the set of all points (x, y) in the plane whose distance to (h, k) is r.
a Circle is the set of pts that are equidistant from a
fixed pt., called the center.

$$
\begin{gathered}
\operatorname{distance}^{2}=(x-h)^{2}+(y-k)^{2} \\
r^{2}=(x-h)^{2}+(y-k)^{2}
\end{gathered}
$$

The Standard Equation of a Circle with center at (h, k) and radius $r>0$ is $(x-h)^{2}+(y-k)^{2}=r^{2}$.
Ex 1: Write an equation of a circle with center at $(2,-1)$ and radius 5 .

$$
\begin{aligned}
& (x-2)^{2}+(y+1)^{2}=5^{2} \\
& (x-2)^{2}+(y+1)^{2}=25
\end{aligned}
$$

Ex 2: Find the center and radius of the circle given by the equation $(x+4)^{2}+(y+3)^{2}=9$. Graph the circle.

$$
\begin{gathered}
(x-(-4))^{2}+(y-(-3))^{2}=3^{2} \\
h=-4 \quad{ }_{k}^{2} \\
k=-3
\end{gathered}
$$

Ex 3: Put this equation in standard form and graph the circle.

$$
\begin{aligned}
& 3 x^{2}+3 y^{2}+6 x-12 y-60=0 \\
& 3\left(x^{2}+y^{2}+2 x-4 y-20\right)=0 \\
& \left(x^{2}+2 x+1\right)+\left(y^{2}-4 y+4\right)-20=0 \\
& \left(\frac{2}{2}\right)^{2}=1 \quad\left(\frac{-4}{2}\right)^{2}=4 \\
& \left(x^{2}+2 x+1\right)+\left(y^{2}-4 y+4\right)=25
\end{aligned}
$$

$(x+1)^{2}+(y-2)^{2}=5^{2} \quad$ standard form of circle egg.
center. $(-1,2)$
radius: $r=S$

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

Ex 4: Select the equations which might be a circle, put the equation in standard form
and determine the center and radius.
a) $x^{2} \Theta y^{2}+3 x-2 y-6=0$ \uparrow
b) $x^{2}+6 x-2 y+6=0$
cannot be a
Is a circe
c) $2 x^{2}+2 y^{2}-4 x-10=0$
this cannot be a circle
d) $3 x+2 y-8=0$
is line
not a circle
Side note:
$x^{2}+y^{2}=0$ graphs into one pt $(0,0)$
circle, because
it's missing y^{2}
e) $x^{2}+y^{2}+9=0$
$x^{2}+y^{2}=-9$
$\Rightarrow r^{2}=-9$
but that cant happen, so this is
not a circle not a circle

$$
\begin{gathered}
x^{2}+y^{2}-2 x-5=0 \\
\left(x^{2}-2 x+1\right)+y^{2}=5+1 \\
(x-1)^{2}+y^{2}=6 \\
\text { center: }(1,0) \quad r=\sqrt{6}
\end{gathered}
$$

f) $3 x^{2}+2 y^{2}+6 x-12 y-6=0$
cannot be circle because coefficients of x^{2} and y^{2} are not the same

Ex 5: Write an equation of a circle with the points $(-2,6)$ and $(3,-1)$ acendpoints of the diameter.
(1)center:
midpt between
$(-2,6)$ and $(3,-1)$
$\left(\frac{-2+3}{2}, \frac{6+-1}{2}\right)$
$=\left(\frac{1}{2}, \frac{5}{2}\right)$
(2) radius:

$$
\begin{aligned}
& r=\frac{1}{2} d \\
& =\frac{1}{2} \sqrt{(3-(-2))^{2}+(-1-6)^{2}} \\
& =\frac{1}{2} \sqrt{5^{2}+7^{2}}=\frac{1}{2} \sqrt{74} \\
& r^{2}=\left(\frac{1}{2}\right)^{2}(\sqrt{74})^{2} \quad(\approx 4.3) \\
& =\frac{74}{4} \quad
\end{aligned}
$$

circle: $\left(x-\frac{1}{2}\right)^{2}+\left(y-\frac{5}{2}\right)^{2}=\frac{74}{4}$

