

$\sin ^{2} u+\cos ^{2} u=1$

$\sin 2 u=2 \sin u \cos u$

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

$c^{2}=a^{2}+b^{2}-2 a b \cos C$

Math 1060 ~ Trigonometry

24 Curves Described by Parametric Equations

Learning Objectives

In this section you will:

- Graph plane curves described by parametric equations.
- Analyze behavior in the graphs of parametric equations.

Curves Described by Parametric Equations

The functions describing the curve, C, traditionally use $f(t)$ to represent x and $g(t)$ to represent y. The independent variable t in this case is called a parameter.
The system of equations $\left\{\begin{array}{l}x=f(t) \\ y=g(t)\end{array}\right.$
is called a system of parametric equations. The parametrization of C endows it with an orientation and the arrows on C indicate the motion as values of t increase.

For example, this set of equations describes the unit circle, with the arrow indicating the orientation.

$$
\left\{\begin{array}{l}
x=\cos t \quad 0 \leq t \leq 2 \pi \\
y=\sin t
\end{array}\right.
$$

To sketch parametric equations, a chart is often useful.
Ex 1: Draw a chart for this set of equations and plot several points.

$$
\left\{\begin{array}{l}
x=2 t+1 \\
y=t^{2}-2
\end{array} \quad t \geq-2\right.
$$

t	$x(t)=2 t+1$	$y(t)=t^{2}-2$	$(x(t), y(t))$
-2	-3	2	$(-3,2)$
-1	-1	-1	$(-1,-1)$
0	1	-2	$(1,-2)$
1	3	-1	$(3,-1)$
2	5	2	$(5,2)$

Ex 2: Plot this equation by following these steps.

$$
\left\{\begin{array}{l}
x=-2 t^{2} \quad \text { on the interval }[-1,1] \\
y=t^{3}
\end{array}\right.
$$

a) Make a table of values.
b) Plot the points, including orientation.

t	$x(t)$	$y(t)$	$(x(t), y(t))$
-1	-2	-1	$(-2,-1)$
$-\frac{1}{2}$	$-\frac{1}{2}$	$-\frac{1}{8}$	$\left(-\frac{1}{2}, \frac{-1}{8}\right)$
0	0	0	$(0,0)$
$\frac{1}{2}$	$-\frac{1}{2}$	$\frac{1}{8}$	$\left(-\frac{1}{2}, \frac{1}{8}\right)$
1	-2	1	$(-2,1)$

Ex 3: Plot this parametric curve with orientation.

$$
\left\{\begin{array}{l}
x=2 \cos t \\
y=1+3 \sin t
\end{array} \quad 0 \leq t \leq \frac{3 \pi}{2}\right.
$$

t	$x(t)$	$y(t)$	$(x(t) y(t))$
0	2	1	$(2,1)$
$\frac{\pi}{4}$	$2\left(\frac{\sqrt{2}}{2}\right)=\sqrt{2}$	$1+\frac{3 \sqrt{2}}{2}$	$\left(\sqrt{2}, 1+\frac{3 \sqrt{2}}{2}\right) \simeq(1.4,3.1)$
$\frac{\pi}{2}$	0	4	$(0,4)$
π	-2	1	$(-2,1)$
$\frac{3 \pi}{2}$	0	-2	$(0,2)$

