

## Dot Product

The dot product of two vectors is a scalar. It can be useful in finding the angle between two vectors.

If $\boldsymbol{v}=\left\langle v_{1}, v_{2}\right\rangle$ and $\boldsymbol{w}=\left\langle w_{1}, w_{2}\right\rangle$, then $\boldsymbol{v} \bullet \boldsymbol{w}=v_{1} w_{1}+v_{2} w_{2}$.
Note: $\vec{\omega} \cdot \vec{\omega}=\omega_{1} \omega_{1}+\omega_{2} \omega_{2}=\omega_{1}^{2}+\omega_{2}^{2}=\|\vec{\omega}\|^{2} \quad\|\vec{\omega}\|^{2}=\vec{\omega} \cdot \vec{\omega}$
Ex 1: Find the dot product of these pairs of vectors.
a) $\boldsymbol{v}=\langle 3,4\rangle$ and $\boldsymbol{w}=\langle-2,5\rangle$.
b) $\boldsymbol{v}=\langle-3,2\rangle$ and $\boldsymbol{w}=\langle-4,-6\rangle$

Geometric Interpretation of the Dot Product


## Note: there are move dot product properties <br> listed in the book to refer to.

We will use the Law of cosines to prove that $\boldsymbol{v} \boldsymbol{\bullet} \boldsymbol{w}=\|\boldsymbol{v}\|\|\boldsymbol{w}\| \cos \boldsymbol{\theta}, 0<\theta<\pi$.

$v \bullet \omega=\|v\|\|w\| \cos \theta$

Ex 2: Determine the angle between these pairs of vectors.
a) $\boldsymbol{v}=\langle 3,4\rangle$ and $\boldsymbol{w}=\langle-2,5\rangle$.
b) $\boldsymbol{v}=\langle-3,2\rangle$ and $\boldsymbol{w}=\langle-4,-6\rangle$

Orthogonal vectors: If two vectors are perpendicular to each other they are said to be orthogonal. What would the cosine of the angle between two orthogonal vectors be?

Ex 3: Determine whether these pairs are vectors are orthogonal or not.
a) $\langle 3,-2\rangle$ and $\langle 1,4\rangle$
b) $\langle 4,-6\rangle$ and $\langle-3,-2\rangle$
c) $\langle 2,-1\rangle$ and $\langle-4,2\rangle$

Orthogonal Projection
If $\boldsymbol{v}$ and $\boldsymbol{w}$ are nonzero vectors, then the orthogonal projection of $\boldsymbol{v}$ onto $\boldsymbol{w}$, denoted by $\operatorname{proj}_{w}(\boldsymbol{v})$ is given by


Ex 4: For $\boldsymbol{v}=\langle-6,-5\rangle$ and $\boldsymbol{w}=\langle 10,-8\rangle$, find $\operatorname{proj}_{w}(\boldsymbol{v})$.

In physics, you will discover how this concept relates to problems about work.

