

Dot Product

The <u>dot product</u> of two vectors is a scalar. It can be useful in finding the angle between two vectors.

If $v = \langle v_1, v_2 \rangle$ and $w = \langle w_1, w_2 \rangle$, then $v \cdot w = v_1 \cdot w_1 + v_2 \cdot w_2$. Note: $\vec{w} \cdot \vec{w} = w_1 \cdot w_1 + w_2 \cdot w_2 = w_1 \cdot w_2 \cdot w_2 = \|\vec{w}\|^2$ i.e. Ex 1: Find the dot product of these pairs of vectors. a) $v = \langle 3, 4 \rangle$ and $w = \langle -2, 5 \rangle$. b) $v = \langle -3, 2 \rangle$ and $w = \langle -4, -6 \rangle$

We will use the Law of cosines to prove that $v \cdot w = ||v|| ||w|| \cos \theta$, $0 < \theta < \pi$.

 $v \bullet w = ||v|| ||w|| \cos \theta$

Ex 2: Determine the angle between these pairs of vectors.

a) $v = \langle 3, 4 \rangle$ and $w = \langle -2, 5 \rangle$. b) $v = \langle -3, 2 \rangle$ and $w = \langle -4, -6 \rangle$

<u>Orthogonal vectors</u>: If two vectors are perpendicular to each other they are said to be orthogonal. What would the cosine of the angle between two orthogonal vectors be?

Ex 3: Determine whether these pairs are vectors are orthogonal or not.

a) $\langle 3,-2 \rangle$ and $\langle 1,4 \rangle$ b) $\langle 4,-6 \rangle$ and $\langle -3,-2 \rangle$

c) $\langle 2,-1 \rangle$ and $\langle -4,2 \rangle$

Orthogonal Projection

If v and w are nonzero vectors, then the orthogonal projection of v onto w, denoted by $\text{proj}_w(v)$ is given by

Ex 4: For $v = \langle -6, -5 \rangle$ and $w = \langle 10, -8 \rangle$, find $\text{proj}_{w}(v)$.

In physics, you will discover how this concept relates to problems about work.