

23 The Dot Product

Learning Objectives

In this section you will:

- Find the dot product of two vectors.
- Learn properties of the dot product.
- Determine the angle between two vectors.
- Determine whether or not two vectors are orthogonal.
- Solve applications of the dot product.

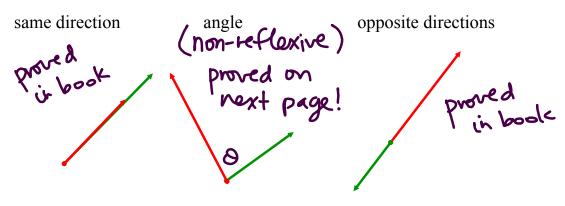
Dot Product

The <u>dot product</u> of two vectors is a scalar. It can be useful in finding the angle between two vectors.

If
$$v = \langle v_1, v_2 \rangle$$
 and $w = \langle w_1, w_2 \rangle$, then $v \cdot w = v_1 w_1 + v_2 w_2$.
Note: $w \cdot w = w_1 w_1 + w_2 w_2 = w_1^2 + w_2^2 = ||\vec{w}||^2$
Ex 1: Find the dot product of these pairs of vectors.

a)
$$v = \langle 3,4 \rangle$$
 and $w = \langle -2,5 \rangle$.
 $\vec{v} \cdot \vec{w} = \vec{w} \cdot \vec{v} = 3(-2) + 4(5)$
 $= -6 + 20 = 14$
b) $v = \langle -3,2 \rangle$ and $w = \langle -4,-6 \rangle$
 $\vec{v} \cdot \vec{w} = -3(-4) + 2(-6)$
 $= 12 - 12 = 0$

Geometric Interpretation of the Dot Product

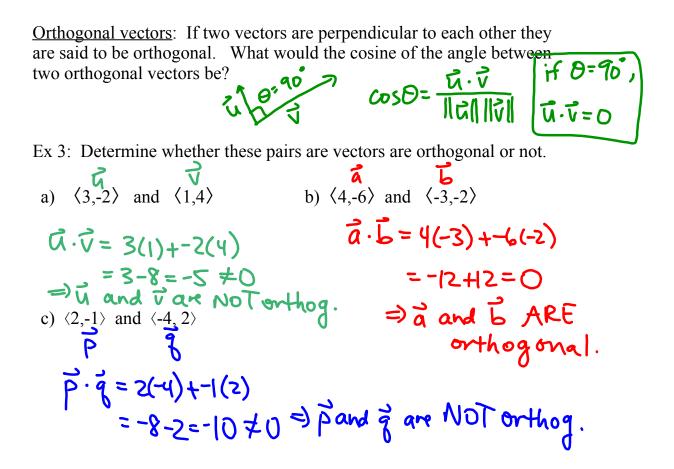


Note: there are more dot product properties listed in the book to refer to. We will use the Law of cosines to prove that $v \cdot w = ||v|| ||w|| \cos \theta$, $0 < \theta < \pi$.

$$v \cdot w = ||v|| ||w|| \cos \theta \quad (\Longrightarrow) \quad \cos \theta = \frac{\vec{v} \cdot \vec{w}}{\|\vec{v}\| \|\vec{w}\|}$$

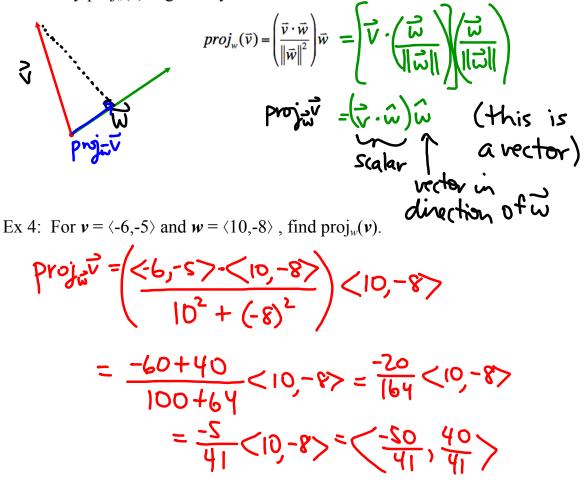
Ex 2: Determine the angle between these pairs of vectors.

a)
$$v = \langle 3, 4 \rangle$$
 and $w = \langle -2, 5 \rangle$.
b) $v = \langle -3, 2 \rangle$ and $w = \langle -4, -6 \rangle$
 $\vec{v} \cdot \vec{w} = 3\langle 2 \rangle + 4\langle 5 \rangle$
 $\|\vec{v}\| = \sqrt{3^2 + 4^2} = 5$
 $\|\vec{v}\| = \sqrt{(-3)^2 + 2^2} = \sqrt{13}$
 $\|\vec{w}\| = \sqrt{(-2)^2 + 5^2} = \sqrt{29}$
 $\Theta = \langle \cos^{-1} \langle \frac{14}{5\sqrt{29}} \rangle \simeq 5^{0}, 7^{\circ}$
 $\Theta = \langle \cos^{-1} \langle 0 \rangle$
 $\Theta = \prod_{i=1}^{2} \text{ for } 90^{\circ}$
 $\vec{v} + \frac{1}{5\sqrt{29}}$



Orthogonal Projection

If v and w are nonzero vectors, then the orthogonal projection of v onto w, denoted by $\text{proj}_w(v)$ is given by



In physics, you will discover how this concept relates to problems about work.