
$\sin ^{2} u+\cos ^{2} u=1$
$\sin 2 u=2 \sin u \cos u$
$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
$c^{2}=a^{2}+b^{2}-2 a b \cos C$

Math 1060 ~ Trigonometry

1 Degree and Radian Measures of Angles

Learning Objectives

In this section you will:

- Convert between degree and radian measures.
- Graph angles in standard position.
- Determine coterminal angle measures in degrees and radians.
- Determine supplementary and complementary angles.
ray : half of
a line
angle: two rays sharing a common endpt

vertex:
the common
end pt of the
has
one endpt
and all pts on line lying to one side of that pt

2 rays making up the angle
straight angle :
an angle that forms a line (i.e. rays are directly 180° angle
 opposite each other)
$\stackrel{\rightharpoonup}{\square}$
0° angle

Degree Measure of Angles and Types of Angles

Ex 1: State the measure of each of these angles in degrees and describe the type of each.
0°

$1 / 12$ of the circle

$$
\begin{aligned}
& \frac{1}{12}\left(360^{\circ}\right) \\
& =30^{\circ}
\end{aligned}
$$

acute angle

$1 / 3$ of the circle

$$
\begin{gathered}
\frac{1}{3}\left(360^{\circ}\right) \\
=120^{\circ}
\end{gathered}
$$

obtuse angle

$$
=90^{\circ}
$$

$1 / 4$ of the circle
right

$$
\frac{5}{6}\left(360^{\circ}\right)
$$

$$
=300^{\circ}
$$

reflex angle

Angles in Standard Position

standard position: initial
side on positive taxis w/ vertex at origin
initial side: starting ray of angle
terminal side: ending ray of angle
positive angle: counter-clockwise (ex α)
negative angle: clock wise (ex β)
coterminal angles: have sane terminal side (there are infinitely many coterminal angles for any angle)
Ex 2: State a coterminal angle between 0° and 360° for each of these.
a) $\alpha=432^{\circ}$
b) $\beta=-25^{\circ}$
c) $\gamma=500^{\circ}$
d) $\theta=-630^{\circ}$

$432^{\circ}-360^{\circ}$ $=72^{\circ}$

$-25^{\circ}+360^{\circ}$

$500^{\circ}-360^{\circ}$
$=140^{\circ}$

$-630^{\circ}+360^{\circ}$ $=-270^{\circ}$

$$
-270^{\circ}+360^{\circ}
$$

$$
=90^{\circ}
$$

https://en.wikipedia.org/wiki/File:Circle radians.gif

Radian Measure of an Angle

What is the number π ?

A radian is that portion of the circle equal in length to one radius of that circle.

$$
\begin{aligned}
& r= \\
& s= \\
& \boldsymbol{\theta}=
\end{aligned}
$$

Ex 3: Graph each of these angles in standard position and classify them according to where their terminal side lies. State another coterminal angle
between -2π and 2π for each angle.

a) $\alpha=\frac{\pi}{3}$
b) $\beta=-\frac{5 \pi}{6}$
c) $\lambda=\frac{\pi}{2}$

d) $\theta=\frac{9 \pi}{4}=2 \pi+\frac{\pi}{4}$

terminal

terminal side in Q

$$
\begin{aligned}
\frac{\pi}{3}-2 \pi=\frac{\pi}{3}-\frac{6 \pi}{3} & \frac{-5 \pi}{6}+2 \pi \quad \begin{array}{l}
\text { axis } \\
=\frac{-5 \pi}{3}
\end{array} \\
& =\frac{-5 \pi}{6}+\frac{12 \pi}{2}-2 \pi=\frac{\pi}{4} \\
& =\frac{7 \pi}{2} \quad=\frac{9 \pi}{2} \\
& =\frac{-3 \pi}{2}
\end{aligned}
$$

terminal side in $Q 1$

Converting Between Degrees and Radians

The conversion factor between degrees and radians is 2π radians $=360^{\circ}$.
use conversion factor

$$
\pi=180^{\circ}
$$

Ex 4: Convert the following measures.
a) 225° to radians
b) $-\frac{5 \pi}{6}$ radians to degrees

$$
\begin{aligned}
& 225^{\circ}(\underbrace{\frac{\pi}{180^{\circ}}}_{\text {a form of one }})=\frac{225 \pi}{180} \\
& \underbrace{\frac{5 \pi}{4}}
\end{aligned}
$$

c) 2 radians to degrees
d) 1080° to radians

$$
2\left(\frac{180^{\circ}}{\pi}\right)=\begin{aligned}
& 360^{\circ} \\
& =14.59^{\circ}
\end{aligned}
$$

β, θ are supplementary angles

λ, α are complementary angles

Ex 5: Determine the complement and supplement (if they exist) for each of these angles.
angle
complement
supplement
a) $\alpha=24^{\circ}$

$$
90^{\circ}-24^{\circ}
$$

$$
=66^{\circ}
$$

$$
180^{\circ}-24^{\circ}=156^{\circ}
$$

b) $\beta=90^{\circ}$
(or DNE)

$$
180^{\circ}-90^{\circ}=90^{\circ}
$$

c) $\gamma=130^{\circ}$
d) $\varphi=180^{\circ}$

$$
180^{\circ}-130^{\circ}=50^{\circ}
$$ to 130° to give 90°)

DNE

Supplementary and Complementary Angles in Radians

α and β add to
make a straight angle

γ and φ add to make art. angle

Ex 6: Determine the complement and supplement (if they exist) for each of these angles.
angle
a) $\alpha=\frac{\pi}{3}$
b) $\beta=\frac{5 \pi}{6}$

DEE
c) $\gamma=\frac{\pi}{4} \quad \underset{\sim}{2}-\frac{\pi}{4}=\frac{\pi}{4}$
d) $\varphi=\pi$
$\pi>\frac{\pi}{2}$

DEE
supplement

$$
\pi-\frac{\pi}{3}=\frac{2 \pi}{3}
$$

$$
\pi-\frac{5 \pi}{6}=\frac{\pi}{6}
$$

$$
\pi-\frac{\pi}{4}=\frac{3 \pi}{4}
$$

$$
0=\pi-\pi
$$

(or DNE)

