

$\sin ^{2} u+\cos ^{2} u=1$

$\sin 2 u=2 \sin u \cos u$

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

$c^{2}=a^{2}+b^{2}-2 a b \cos C$

Math 1060 ~ Trigonometry

19 Trigonometric Representation of Complex Numbers

Learning Objectives

In this section you will:

- Find the real part, the imaginary part, and the modulus of a complex number.
- Graph complex numbers.
- Convert between rectangular form and trigonometric form of complex numbers.

Review of Complex Numbers
What is $i ? \quad i^{2}=-1 \quad i=\sqrt{-1} \quad$ (imaginary $\#$)
The rectangular form of a complex number is $z=a+b i$ where a is the real part and b is the imaginary part. This is represented by $\operatorname{Re}(z)=a$ and $\operatorname{Im}(z)=b$.
This exercise should serve as a review of complex number as learned in a previous course.

Ex 1: Let $z_{1}=2-2 i$ and $z_{2}=-3+4 i$.
a) Sketch z_{1} and z_{2} in the complex plane
b) $z_{1}+z_{2}=2-2 i+-3+4 i$

$$
=-1+2 i
$$

c) $z_{1} \times z_{2}=(2-2 i)(-3+4 i)$

$$
\begin{aligned}
& =-6+8 i+6 i-8 i^{2} \\
& =-6+14 i-8(-1)=2+14 i
\end{aligned}
$$

d) $\overline{z_{1}}=$ Conjugate of z_{1}

$$
=2+2 i \quad=-3-4 i
$$

e) $\left|z_{1}\right|=$ magnitude/abs.value/ $\left|z_{2}\right|=\sqrt{(-3)^{2}+4^{2}}=\sqrt{25}=5$ modulus of z_{1}

$$
=\sqrt{2^{2}+(-2)^{2}}=\sqrt{8}=\sqrt{4 \cdot 2}=2 \sqrt{2}
$$

f) $\left(z_{l}\right)^{2}=(2-2 i)^{2}=(2-2 i)(2-2 i)$

$$
=4-4 i-4 i+4 i^{2}=4-8 i+(-4)=-8 i
$$

You may be asking what is the square root of i ?

Trigonometric Form (Polar Form) of a Complex Number
$z=a+b i$ becomes $z=r(\cos \theta+i \sin \theta)=r \operatorname{cis} \theta$.

- $r=|z|$ and is called the modulus of z.
- θ is called the argument of z, and $\tan \theta=\frac{b}{a}$.
θ is the angle when sketched in standard position, on the interval $[0,2 \pi)$.
$\tan ^{-1}\left|\frac{b}{a}\right|$ will give you the reference angle.
It is up to you to name the argument in the correct quadrant.
Note that the argument and the modulus are both positive.

$$
z=a+b i \quad r=\sqrt{a^{2}+b^{2}}
$$

Ex 2: State the coordinates of these points in rectangular form $(a+b i)$ and in polar form (r cis θ) using radians.

$$
\begin{aligned}
& \text { A: } \quad-3+3 i=z \\
& r=\sqrt{(-3)^{2}+3^{2}}=\sqrt{18}=3 \sqrt{2} \\
& \begin{aligned}
\tan \theta & =\frac{3}{-3}=-1 \quad\binom{\text { note: }}{\theta}=\frac{3 \pi}{4}
\end{aligned} \\
& \theta=\frac{3 \pi}{4} \\
& z=3 \sqrt{2} \operatorname{cis}\left(\frac{3 \pi}{4}\right) \\
& =3 \sqrt{2}\left(\cos \left(\frac{3 \pi}{4}\right)+i \sin \left(\frac{3 \pi}{4}\right)\right) \\
& \text { B: } z=-4+0 i \quad \tan \theta=\frac{0}{4}=0 \quad z=0+-2 i=-2 i \\
& r=\sqrt{(-4)^{2}+0^{2}}=4 \\
& \theta=\pi \\
& \text { D: } r=2 \\
& z=4 \operatorname{cis} \pi \\
& \text { C: } \quad z=-2+-2 i \\
& \theta=\frac{3 \pi}{2} \\
& z=2 \operatorname{cis}\left(\frac{3 \pi}{2}\right) \\
& r=\sqrt{(-2)^{2}+(-2)^{2}}=\sqrt{8}=2 \sqrt{2} \\
& \begin{aligned}
\tan \theta & =\frac{-2}{-2}=1 \quad\binom{\text { note: }}{\theta^{\prime}=\frac{\pi}{4}} \\
\theta & =5 \pi
\end{aligned} \\
& \theta=\frac{5 \pi}{4} \\
& z=2 \sqrt{2} \operatorname{cis}\left(\frac{5 \pi}{4}\right)
\end{aligned}
$$

Ex 3: Put these in trigonometric (polar) form, $r(\cos \theta+i \sin \theta)$.
a) $z_{l}=2 \sqrt{3}-2 i \quad$ (radians)
b) $z_{2}=-3+4 i \quad$ (degrees)

a) $z_{1}=3\left(\cos \frac{5 \pi}{3}+i \sin \frac{5 \pi}{3}\right)$
b) $z_{2}=20\left(\cos 210^{\circ}+i \sin 210^{\circ}\right)$
$r=3 \quad \theta=\frac{5 \pi}{3}$
$z_{1}=3\left(\frac{1}{2}+i\left(-\frac{-\sqrt{3}}{2}\right)\right)$
$z_{1}=\frac{3}{2}-\frac{3 \sqrt{3}}{2} i$

$$
\begin{aligned}
& z_{2}=20\left(-\frac{\sqrt{3}}{2}+i\left(-\frac{1}{2}\right)\right) \\
& z_{2}=-10 \sqrt{3}-10 i
\end{aligned}
$$

