

$\sin ^{2} u+\cos ^{2} u=1$

$\sin 2 u=2 \sin u \cos u$

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

$c^{2}=a^{2}+b^{2}-2 a b \cos C$

Math 1060 ~ Trigonometry

18 Graphing Polar Equations

Learning Objectives

In this section you will:

- Learn techniques for graphing polar equations.
- Graph polar equations.

What do these equations represent?
These are all lines!
(1) $\theta=\beta \quad$ (β constant)

(radial line through the pole/origin)
(2) $r \cos \theta=a \quad \Leftrightarrow \quad \mathrm{x}=\mathrm{a}$
(a constant)
vertical line

(3) $r \sin \theta=b \quad \Longleftrightarrow \quad y=b$
(b constant) horizontal
line

What about these?
all of these egns represent
circles (that go thru origin)
(1) $r=2 a \cos \theta$ (a constant)

$$
r^{2}=2 a(r \cos \theta) \Longleftrightarrow x^{2}+y^{2}=2 a x
$$

(2) $r=2 b \sin \theta \quad$ (b constant)
circle centered at $x^{2}-2 a x+y^{2}=0$

(2)
$(0, b) \omega /$ radius $b \quad\left(x^{2}-2 a x+a^{2}\right)+y^{2}=a^{2}$
(3) $r=2 a \cos \theta+2 b \sin \theta(a, b$ constants)
circle centered at (a, b) ($x-a)^{2}+y^{2}=a^{2}$ ω /radius of $\sqrt{a^{2}+b^{2}}$
Ex 1:

w) radius of a

$$
r=4 \cos \theta
$$

Symmetry
Symmetry with respect to the line $\theta=\pi / 2$

$$
(y \text {-axis) }
$$

Replace (r, θ) with $(r, \pi-\theta)$ or $(-r,-\theta)$: If an equivalent equation results, the graph has this type of symmetry.

(2)

Symmetry with respect to the polar axis $(\theta=0): \quad(x$-axis $)$

Replace (r, θ) with $(r,-\theta)$ or $(-r, \pi-\theta)$: If an equivalent equation results, the graph has this type of symmetry.

3

3

Symmetry with respect to the pole (origin)

Replace (r, θ) with $(-\mathrm{r}, \theta)$ or $(\mathrm{r}, \pi+\theta)$: If an equivalent equation results, the graph has this type of symmetry.

If a polar equation passes a symmetry test, then its graph definitely exhibits that symmetry. However, if a polar equation fails a symmetry test, then its graph may or may not have that kind of symmetry.

Zeros and maximum r-values

Other helpful tools in graphing polar equations are knowing the values for θ for which $|r|$ is maximum and those for which $r=0$.

Ex 2: Graph $\quad r=\frac{1}{2}+\cos \theta$
Symmetry: (1) replace $(r, \theta) \omega /(-r,-\theta)$: $-r=\frac{1}{2}+\cos (-\theta)$

$$
-r=\frac{1}{2}+\cos (\theta)
$$

$$
\Leftrightarrow r=\frac{1}{2}+\cos \theta
$$

(2) replace $(r, \theta) \omega /(r,-\theta): \quad r=\frac{1}{2}+\cos (-\theta)$
$\begin{gathered}\text { symmetry wot } \theta=0 \\ (x-a x i s)\end{gathered} \quad \angle \quad r=\frac{1}{2}+\cos \theta$
(3) replace $(r, \theta) \omega /(-r, \theta): \quad-r=\frac{1}{2}+\cos \theta$ $|r|$ maximum: $r=\frac{1}{2}+\cos \theta \quad \nLeftarrow r=\frac{1}{2}+\cos \theta$
Zero of $r:$ when $\cos \theta=1 \Rightarrow r$ max value $=\left(\frac{1}{2}=\frac{3}{2}\right.$ when $\theta=0,2 \pi, \ldots$
$0=\frac{1}{2}+\cos \theta \Longleftrightarrow \cos \theta=\frac{-1}{2} \Leftrightarrow \theta=\frac{2 \pi}{3}, \frac{4 \pi}{3}$

θ	0	$\pi / 4$	$\pi / 3$	$\pi / 2$	$2 \pi / 3$	$3 \pi / 4$	π
r	$\frac{3}{2}$	$\frac{1+\sqrt{2}}{2}$	1	$\frac{1}{2}$	0	$\frac{1-\sqrt{2}}{2}$	$\frac{-1}{2}$

Limaçon

Limaçons

$$
r=3 \sin 2 \theta
$$

Symmetry: try replacing (r, θ) w/ $(-r,-\theta)$

$$
\begin{gathered}
-r=3 \sin (-2 \theta) \\
-r=-3 \sin (2 \theta) \\
r=3 \sin (2 \theta)
\end{gathered}
$$

symmetry wort

$$
\theta=\frac{\pi}{2} \quad(y \text {-axis })
$$

$r \mid$ maximum:
r is max when $\sin (2 \theta)= \pm 1 \Rightarrow 2 \theta=\frac{\pi}{2}, \frac{3 \pi}{2}$ Zero of r :

$$
\begin{gathered}
0=3 \sin (2 \theta) \\
\sin (2 \theta)=0 \Rightarrow 2 \theta=0, \pi \\
\begin{array}{|c|c|c|c|c|c|c|}
\pi / 2 / 3 / 8 \\
& 0 & \pi / 8 & \pi / 4 & \pi / 4 & \pi / 3 & \pi / 2, \frac{\pi}{2} \\
\hline r & 0 & \frac{3 \sqrt{2}}{2} & \frac{3 \sqrt{3}}{2} & 3 & \frac{3 \sqrt{3}}{2} & 0 \\
\hline
\end{array}
\end{gathered}
$$

$$
\theta=\frac{\pi}{4}, \frac{3 \pi}{4}
$$

$$
\left(3, \frac{\pi}{4}\right)\left(-3, \frac{3 \pi}{4}\right)
$$

Roses

If n is odd, the rose is n-petalled. If n is even, the rose is $2 n$-petalled.

No reason to limit ourselves to n integer:

$n=3 / 4$

$n=1 / 5$

$n=2 / 5$

Or even rational:

