

What do these equations represent?

These are all lines!

What about these? All of these eqns represent
Circles (that go thru origin) Q

$$r^2 = 2a\cos\theta$$
 (a constant)
 $r^2 = 2a(r\cos\theta) \iff x^2 + y^2 = 2ax$
($r^2 = 2b\sin\theta$ (b constant)
 $2r = 2b\sin\theta$ (b constant)
 $2r = 2a\cos\theta + 2b\sin\theta$ (a b constant)
 $r^2 = 2a\cos\theta + 2b\sin\theta$ (a b constant)
 $2r = 2a\cos\theta + 2b\sin\theta$ (a constant)
 $2r = 2a\cos\theta + 2b\sin\theta$ (a constant)
 $2r = 2a^{2} - 2a^{2} - 2a^{2} -$

If a polar equation passes a symmetry test, then its graph definitely exhibits that symmetry. However, if a polar equation fails a symmetry test, then its graph may or may not have that kind of symmetry.

Zeros and maximum *r*-values

Other helpful tools in graphing polar equations are knowing the values for θ for which |r| is maximum and those for which r = 0.

Ex 2: Graph
$$r = \frac{1}{2} + \cos\theta$$

Symmetry: () replace $(r, \theta) = (r, -\theta)$: $-r = \frac{1}{2} + \cos(\theta)$
 $\Rightarrow r = \frac{1}{2} + \cos\theta$
(2) replace $(r, 0) = (r, -\theta)$: $r = \frac{1}{2} + \cos\theta$
symmetry $= \frac{1}{2} + \cos\theta$
(X-axis) $r = \frac{1}{2} + \cos\theta$
(3) replace $(r, \theta) = (r, \theta)$: $-r = \frac{1}{2} + \cos\theta$
Zero of r : $= \frac{1}{2} + \cos\theta$ ($\Rightarrow \cos\theta = \frac{1}{2} + \cos\theta$
Zero of r : $= \frac{1}{2} + \cos\theta$ ($\Rightarrow \cos\theta = \frac{1}{2} + \cos\theta$
 $T = \frac{1}{2} + \cos\theta$
 $= \frac{1}{2} + \cos\theta$ ($\Rightarrow \cos\theta = \frac{1}{2} + \cos\theta$
 $r = \frac{1}{2} + \cos\theta$

Limaçon

<u>Limaçons</u>

<u>Roses</u>

or
$$r = a \sin(n \theta)$$
, a constant
 $r = a \cos(n \theta)$.

If n is odd, the rose is n-petalled. If n is even, the rose is 2 n-petalled.

No reason to limit ourselves to *n* integer:

Or even rational:

