

$\sin ^{2} u+\cos ^{2} u=1$

$\sin 2 u=2 \sin u \cos u$

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

$$
c^{2}=a^{2}+b^{2}-2 a b \cos C
$$

Math 1060 ~ Trigonometry

17 Polar Coordinates and Equations

Learning Objectives

In this section you will:

- Graph points in polar coordinates.
- Convert points in polar coordinates to rectangular coordinates and vice versa.
- Convert between rectangular and polar equations.

Rectangular Coordinates: (x, y)

- pt given as an ordered parr - tells how far over (horizontally) to go and hows for up/down to
 go (vertically)
Polar Coordinates: (r, θ)
- pts are still given as ordered pairs
- tells distance
from origin to travel, along the θ radial line

In fact:
(r, θ) has infinitely many representations:
$(r, \theta+2 n \pi)$ and $(-r, \theta+(2 n+1) \pi)$, where n is any integer

How do we translate between Cartesian and polar coordinates?
Polar to Cartesian: given (r, θ), what is (x, y) ?

Ex: Convert $(-4,2 \pi / 3)$ to Cartesian coordinates. $\left(-4, \frac{2 \pi}{3}\right)=(2,-2 \sqrt{3})$

$$
\begin{aligned}
& x=r \cos \theta=-4 \cos \left(\frac{2 \pi}{3}\right) \\
& \\
& =-4\left(\frac{-1}{2}\right)=2 \\
& \begin{aligned}
y=r \sin \theta & =-4 \sin \left(\frac{2 \pi}{3}\right) \\
& =-4(\sqrt{3} / 2)=-2 \sqrt{3}
\end{aligned}
\end{aligned}
$$

polar rect.

How do we translate between Cartesian and polar coordinates?
Cartesian to polar:

Ex 2: Convert $(-2,2)$ to polar coordinates.

$$
\begin{aligned}
& x^{2}+y^{2}=r^{2} \\
& (-2)^{2}+2^{2}=r^{2} \\
& 8=r^{2} \\
& r= \pm \sqrt{8}= \pm 2 \sqrt{2} \\
& \tan \theta=\frac{y}{x}=\frac{2}{-2}=-1 \\
& \theta=\frac{-\pi}{4}+n \pi \\
& \left(2 \sqrt{2}, \frac{3 \pi}{4}\right) \\
& \left(-2 \sqrt{2}, \frac{-\pi}{4}\right) \\
& \left(2 \sqrt{2}, \frac{-5 \pi}{4}\right)
\end{aligned}
$$

We can convert equations, too!
Ex 3:
(a) Convert $x^{2}-3 x=1+x y$ into polar coordinates.

$$
\begin{gathered}
x=r \cos \theta \\
y=r \sin \theta \\
r^{2} \cos ^{2} \theta-3 r \cos \theta=1+(r \cos \theta)(r \sin \theta) \\
r^{2} \cos ^{2} \theta-3 r \cos \theta=1+r^{2} \sin \theta \cos \theta \\
r^{2} \cos ^{2} \theta-3 r \cos \theta-r^{2} \sin \theta \cos \theta=1
\end{gathered}
$$

(b) Convert $r=-2 \cos \theta$ into Cartesian coordinates.

$$
\begin{array}{cc}
r^{2}=-2 r \cos \theta & x^{2}+y^{2}=r^{2} \quad \tan \theta=\frac{y}{x} \\
x^{2}+y^{2}=-2 x & x=r \cos \theta \\
x^{2}+2 x+y^{2}=0 & y=r \sin \theta \\
\left(x^{2}+2 x+1\right)-1+y^{2}=0 \\
(x+1)^{2}+y^{2}=1 & \text { (Circle of radius } 1, \text { centered } \\
\text { at }(-1,0)
\end{array}
$$

