

The inverse functions allow us to calculate angles in a right triangle, given two of the sides.
Ex 1: Determine the acute angles in a 3-4-5 right triangle.

Ex 2: If a 50 -meter rope is attached to the top of a 20 -meter pole for a tight-rope event, what angle does the rope make with the ground?

We can also solve trigonometric equations for angles in radians.
Remember: $x=\sin ^{-1}(a)$ returns a single, principal value and $\sin x=a$ will have an infinite number of solutions, if defined.

Sample: Solve for x .
$x=\sin ^{-1}\left(-\frac{1}{2}\right) \quad \sin x=-\frac{1}{2}$

Ex 3: Solve these for x, where x is in radians. State the solution on the interval $[0,2 \pi)$ and then state the general solution for all angles which provide a solution to the equation.
a) $\sqrt{2} \sin x-1=0$
b) $\sec ^{2} x=4$

Ex 4: State the general solution for each of these.
a) $\tan ^{2} x-3=1$
b) $\cos (2 x)=-\frac{\sqrt{3}}{2}$

Ex 5: State all radian values where the line $y=2$ intersects with the function $y=\sec x$.

