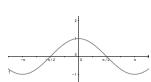


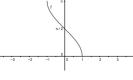
To find the inverse of the trigonometric functions, our first problem is that they are not one-to-one.

$$y = \sin(x)$$

$$y = \sin^{-1}(x) = \arcsin(x)$$


restricted domain: domain:

range: range:


symmetry: symmetry:

does $\sin(\sin^{-1}(x)) = x$? does $\sin^{-1}(\sin(x)) = x$?

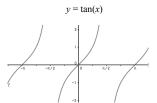
$$y = \cos(x)$$

domain:

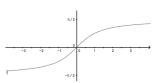
 $y = \cos^{-1}(x) = \arccos(x)$

restricted domains:

range:


symmetry:

does $\sin(\cos^{-1}(x)) = x$?


range:

symmetry:

 $\operatorname{does} \operatorname{cos}^{-1}(\operatorname{cos}(x)) = x?$

 $y = \tan^{-1}(x) = \arctan(x)$

restricted domain:

range:

symmetry:

does $tan(tan^{-1}(x)) = x$?

domain:

range:

symmetry:

does $tan^{-1}(tan(x)) = x$?

When working these problems, it is easier if you think of the Unit Circle rather than the Cartesian graph.

 $\sin^{-1}(x)$ answers will be in the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

 $\cos^{-1}(x)$ answers will be in the interval $[0,\pi]$

 $\tan^{-1}(x)$ answers will be in the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

Note that to compute the $\sec^{-1}(x)$, $\csc^{-1}(x)$ and $\cot^{-1}(x)$ you can turn each into a problem involving the three functions above.

Ex 1: Look at a Unit Circle and practice by finding the answers to these:

a)
$$\sin^{-1}\left(\frac{\sqrt{3}}{2}\right)$$

d)
$$\sin^{-1}\left(-\frac{1}{2}\right)$$

b)
$$\cos^{-1}\left(\frac{\sqrt{2}}{2}\right)$$

e)
$$\sec^{-1}\left(-\frac{2}{\sqrt{3}}\right)$$

c)
$$\tan^{-1}\left(-\frac{1}{\sqrt{3}}\right)$$

- Ex 2: Try these without looking at a Unit Circle.
- a) $\sin^{-1}(-1)$

d) csc⁻¹(0)

b) $\cos^{-1}(0)$

e) $\sec^{-1}(-2)$

c) tan⁻¹(1)

- f) cot⁻¹(-1)
- Ex 3: Which of these are true? Correct any that are false.
- a) $\sin^{-1}\left(\sin\left(\frac{3\pi}{4}\right)\right) = \frac{3\pi}{4}$
- b) $\cos\left(\cos^{-1}\left(\frac{1}{2}\right)\right) = \frac{1}{2}$
- c) $\tan^{-1}(\tan \pi) = \pi$
 - Ex 4: These will require a bit more thought and perhaps a drawing of a triangle. Evaluate these.
 - a) $\cos\left(\arctan\left(\frac{2}{3}\right)\right)$
 - b) $\tan\left(\sin^{-1}\left(\frac{3}{4}\right)\right)$
 - c) $\sec\left(\cos^{-1}\left(\frac{3x}{2}\right)\right)$
 - Ex 5: Evaluate these.
 - a) $\sec\left(\arctan\left(-\frac{3}{4}\right)\right)$
- b) cot(sin⁻¹(-0.2))

Ex 5: Here is another challenge. Evaluate these.

a)
$$\sec\left(\arctan\left(-\frac{3}{4}\right)\right)$$
 b) $\cot(\sin^{-1}(-0.2))$

Ex 6: A plane flies at an altitude of 6 miles toward a point directly over an observer. Write the angle θ as a function of x, the horizontal distance from the observer to a point on the ground directly below the airplane.