

$\sin ^{2} u+\cos ^{2} u=1$

$\sin 2 u=2 \sin u \cos u$

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

$c^{2}=a^{2}+b^{2}-2 a b \cos C$

Math 1060 ~ Trigonometry

12 Inverse Trigonometric Functions

Learning Objectives

In this section you will:

- Learn and be able to apply properties of the inverse trigonometric functions, including domain and range.
- Find the exact values of inverse trigonometric functions.
- Convert compositions of trigonometric and inverse trigonometric functions to algebraic expressions.

To find the inverse of the trigonometric functions, our first problem is that they are not one-to-one.
(i.e. $y=\sin x$ does not pass horizontal line test)

restricted domain: $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
range: $[-1,1]$
symmetry: across origin
(it's an odd fn)
doe (i) $\sin \left(\sin ^{-1}(x)\right)=x$?
domain: $[-1,1]$
range: $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
symmetry: across origin
(it's also an odd fn_{n})
(2) does $\sin ^{-1}(\sin (x))=x$?
ie. do sine and inverse sine always undo each other? No!. (They undo each other some tines.)
(1) $\sin ^{-1} x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ works for all domain

$$
\Rightarrow \sin \left(\sin ^{-1} x\right)=x
$$

x values
(2) $\sin x \in[-1,1]$ but $\sin ^{-1}(\sin x) \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
if $x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, then $\sin ^{-1}(\sin x)=x$
but if $x \notin\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, then $\sin ^{-1}(\sin x) \neq x$
remember
ϵ means element of
\notin " not an element of

$$
y=\cos (x)
$$

range: $[-1,1]$
symmetry: nome
does $\cos \left(\cos ^{-1}(x)\right)=x$?
Yes
$y=\tan (x)$

restricted domain: $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
range: $(-\infty, \infty) \quad$ range: $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
symmetry: odd f_{n} (sym. about symmetry: also odd fun (sym. about doestan $\left(\tan ^{-1}(x)\right)=x$? the origin)?
Yes, always
works.

$$
y=\cos ^{-1}(x)=\arccos (x)
$$

domain: $[-1,1]$
range: $[0, \pi]$
symmetry: none
(2) does $\cos ^{-1}(\cos (x))=x$? No, only works sometimes, when $x \in[0, \pi]$.

$$
y=\tan ^{-1}(x)=\arctan (x)
$$

domain: $(-\infty, \infty)$
(2) origin) No, only works when

$$
x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) .
$$

When working these problems, it is easier if you think of the Unit Circle rather than the Cartesian graph.
$\sin ^{-1}(\mathrm{x})$ answers will be in the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

$\cos ^{-1}(\mathrm{x})$ answers will be in the interval $[0, \pi]$
$\tan ^{-1}(\mathrm{x})$ answers will be in the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

Note that to compute the $\sec ^{-1}(x), \csc ^{-1}(x)$ and $\cot ^{-1}(x)$ you can turn each into a problem involving the three functions above.
ex $\quad \theta=\sec ^{-1} x$
$\theta=\cos ^{-1}\left(\frac{1}{x}\right)$

$$
\begin{aligned}
\sec \theta & =x \\
\cos \theta & =\frac{1}{x}
\end{aligned}
$$

$$
\begin{aligned}
& \sec ^{-1} x=\cos ^{-1}\left(\frac{1}{x}\right) \\
& \csc ^{-1} x=\sin ^{-1}\left(\frac{1}{x}\right) \\
& \cot ^{-1} x=\tan ^{-1}\left(\frac{1}{x}\right), x>0
\end{aligned}
$$

Ex 1: Look at a Unit Circle and practice by finding the answers to these:
a) $\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)=\frac{\pi}{3}$

d) $\sin ^{-1}\left(-\frac{1}{2}\right)=\frac{-\pi}{6}$

b) $\cos ^{-1}\left(\frac{\sqrt{2}}{2}\right)=\frac{\pi}{4}$

e) $\sec ^{-1}\left(-\frac{2}{\sqrt{3}}\right)$
c) $\tan ^{-1}\left(-\frac{1}{\sqrt{3}}\right)=\frac{-\pi}{6}$

f) $\begin{aligned} & \tan ^{-1}(-1) \\ &=-\frac{\pi}{4}\end{aligned}$

Ex 2: Try these without looking at a Unit Circle.
a) $\sin ^{-1}(-1)=\frac{-\pi}{2}$

b) $\cos ^{-1}(0)=\frac{\pi}{2}$

d) $\csc ^{-1}(0)=\sin ^{-1}\left(\frac{1}{0}\right)$
undefined a problem.
e) $\sec ^{-1}(-2)$
c) $\tan ^{-1}(1)=\frac{\pi}{4}$

f) $\cot ^{-1}(-1)$

$$
\begin{aligned}
& =\cos ^{-1}\left(-\frac{1}{2}\right) \\
& =\frac{2 \pi}{3}
\end{aligned}
$$

$$
=\frac{3 \pi}{4}
$$

Ex 3: Which of these are true? Correct any that are false.
a) $\sin ^{-1}\left(\sin \left(\frac{3 \pi}{4}\right)\right)=\frac{3 \pi}{4}$

$$
\text { false } \sin ^{-1}\left(\sin \left(\frac{3 \pi}{4}\right)\right)=\sin ^{-1}\left(\frac{\sqrt{2}}{2}\right)
$$

$$
=\frac{\pi}{4}+\frac{3 \pi}{4}
$$

b) $\cos \left(\cos ^{-1}\left(\frac{1}{2}\right)\right)=\frac{1}{2}$ two $\cos \left(\cos ^{-1}\left(\frac{1}{2}\right)\right)=\cos \left(\frac{\pi}{3}\right)=\frac{1}{2}$
c) $\tan ^{-1}(\tan \pi)=\pi$ false

$$
\tan ^{-1}(\tan \pi)=\tan ^{-1}(0)=0 \neq \pi
$$

Ex 4: These will require a bit more thought and perhaps a drawing of a triangle.
Evaluate these.
a) $\cos (\underbrace{\arctan \left(\frac{2}{3}\right)})=\cos \theta$

$\tan \theta=\frac{2}{3}$
b)

$$
\begin{aligned}
& \tan \theta=\frac{5}{3} \\
& \tan (\underbrace{\left.\sin ^{-1}\left(\frac{3}{4}\right)\right)}=\tan \alpha=\frac{3}{\sqrt{7}} \\
& \alpha=\sin ^{-1}\left(\frac{3}{4}\right) \\
& \sin \alpha=\frac{3}{4}
\end{aligned}
$$

c) $\sec \left(\cos ^{-1}\left(\frac{3 x}{2}\right)\right)=\frac{1}{\cos \left(\cos ^{-1}\left(\frac{3 x}{2}\right)\right)}=\frac{1}{\frac{3 x}{2}}=\frac{2}{3 x}$

Ex 5: Evaluate these.

$$
\begin{aligned}
& \text { a) } \sec (\underbrace{\arctan \left(-\frac{3}{4}\right)}_{\beta \text { in } Q 4})=\sec \beta=\frac{5}{4})
\end{aligned}
$$

$$
\begin{aligned}
& \text { b) } \cot (\underbrace{\sin ^{-1}(-0.2)}_{\gamma \text { in } Q 4})=\cot \gamma \\
& \begin{array}{l}
\gamma \text { in } Q 4 \\
\gamma=\sin ^{-1}(-0.2) \\
\sin \gamma=-0.2
\end{array} \frac{\sqrt{1-0.2^{2}}=\sqrt{96}=0.2}{} \\
& \Rightarrow \cot \gamma=\frac{\sqrt{0.96}}{-0.2}
\end{aligned}
$$

Ex 6: A plane flies at an altitude of 6 miles toward a point directly over an observer. Write the elevation angle θ as a function of x , the horizontal distance from the observer to a point on the ground directly below the airplane.

$$
\theta=?
$$

$$
x>0
$$

$$
\begin{aligned}
& \tan \theta=\frac{6}{x} \\
& \theta=\tan ^{-1}\left(\frac{6}{x}\right)
\end{aligned}
$$

$$
\Rightarrow \theta \text { in } Q 1
$$

