|  |  |
| :---: | :---: |
| $\sin ^{2} u+\cos ^{2} u=1$ | 11 Multiple Angle Identities |
| $\sin 2 u=2 \sin u \cos u$ | Learning Objectives |
| $\begin{gathered} a \\ \sin A \\ =\frac{b}{\sin B}=\frac{c}{\sin C} \\ c^{2}=a^{2}+b^{2}-2 a b \cos C \end{gathered}$ | In this section you will: <br> - Learn the double and half angle identities for sine, cosine and tangent. <br> - Find trigonometric values of double and half angles. <br> - Verify identities involving double and half angles. <br> - Learn and apply the power reduction formulas for sine and cosine. <br> - Learn and apply product/sum formulas. |

The double angle identities are easy to generate using the identities for the sum of two angles.
$\sin (2 \theta)=\sin (\theta+\theta)$
$\cos (2 \theta)=\cos (\theta+\theta)$


Why do we need the double angle identities? Do they allow us to compute exact values of any angles?

- Simplify expressions.
- Solve equations with $2 x$.

Ex 1: Solve this equation for values of $x$ on the interval $[0,2 \pi)$.

$$
\sin (2 x)+\cos (x)=0
$$

Starting with two forms of the double angle identity for the cosine, we can generate half-angle identities for the sine and cosine.

$$
\cos (2 \theta)=1-2 \sin ^{2} \theta \quad \cos (2 \theta)=2 \cos ^{2} \theta-1
$$

```
Power Reduction Formulas: For all angles \(\theta\),
- \(\sin ^{2}(\theta)=\frac{1-\cos (2 \theta)}{2}\)
- \(\cos ^{2}(\theta)=\frac{1+\cos (2 \theta)}{2}\)
```

$\sin \left(\frac{\theta}{2}\right)$
$\cos \left(\frac{\theta}{2}\right)$
$\tan \left(\frac{\theta}{2}\right)$

Ex 2: Use these identities to determine exact values.
a) $\sin \left(105^{\circ}\right)$
b) $\tan \left(\frac{7 \pi}{12}\right)$

Ex 3: If $\theta$ is an obtuse angle and $\sin \theta=\frac{3}{5}$, find the exact value of these using double/half angle identities.
a) $\sin (2 \theta)$
b) $\cos \left(\frac{\theta}{2}\right)$
c) $\tan (2 \theta)$

Ex 4: Evaluate $\cos \left(\frac{7 \pi}{12}\right)$ in two ways, using the half-angle identity and using the
difference identity.

