

Math 1060 ~ Trigonometry

11 Multiple Angle Identities

Learning Objectives

In this section you will:

- Learn the double and half angle identities for sine, cosine and tangent.
- Find trigonometric values of double and half angles.
- Verify identities involving double and half angles.
- Learn and apply the power reduction formulas for sine and cosine.
- Learn and apply product/sum formulas.

The double angle identities are easy to generate using the identities for the sum of two angles.

Ô

 $sin (2\theta) = sin (\theta + \theta) (use$ sum $= sin \Theta cos \Theta formula/$ + cos O sin O identity)= 2 sin O cos OSin(20) = 2 sin O cos O

$$\tan\left(2\theta\right) = \tan\left(\theta + \theta\right)$$

$$= \frac{\tan \theta + \tan \theta}{1 - \tan \theta \tan \theta}$$

$$\frac{1 - \tan \theta \tan \theta}{1 - \tan \theta}$$

$$\frac{1 - \tan \theta}{1 - \tan^2 \theta}$$

$$\cos (2\theta) = \cos (\theta + \theta)$$

$$= (os \theta cos \theta - sin \theta sin \theta)$$

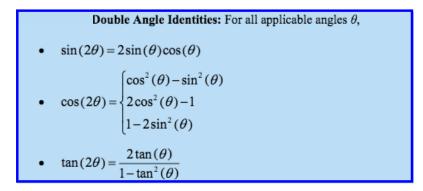
$$= (os^{2} \theta - sin^{2} \theta)$$

$$= (os^{2} \theta - sin^{2} \theta)$$

$$= (cos(2\theta) = cos^{2} \theta - sin^{2} \theta)$$
Note:
because $cos^{3} \theta = 1 - sin^{2} \theta$
and $sin^{2} \theta = 1 - cos^{2} \theta$
We get 2 other varieties
of double angle identity
$$= for \quad cosine$$

$$= (cos(2\theta) = 1 - 2sin^{2} \theta)$$

$$= (cos(2\theta) = 2cos^{2} \theta - 1)$$

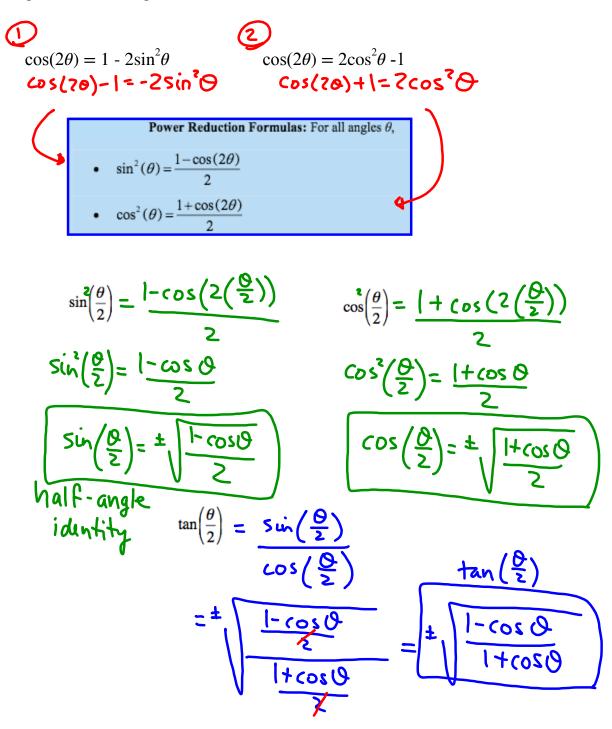


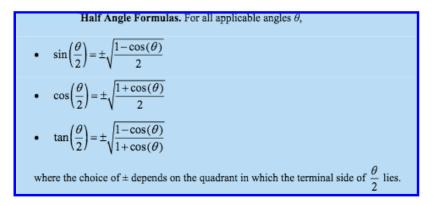
Why do we need the double angle identities? Do they allow us to compute exact values of any angles?

- Simplify expressions.
- Solve equations with 2*x*.

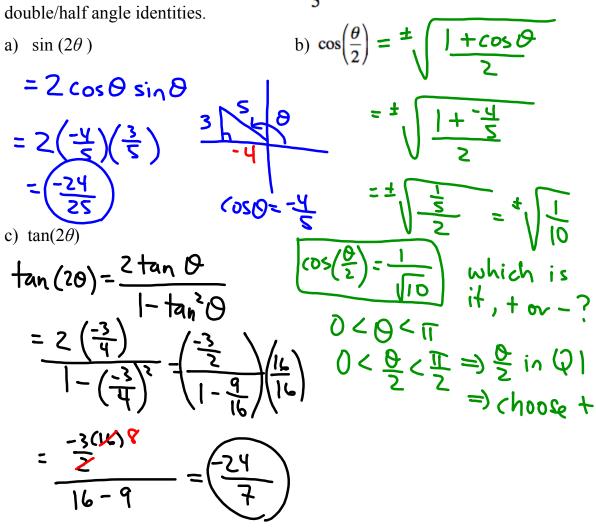
Ex 1: Solve this equation for values of x on the interval $[0,2\pi)$.

Starting with two forms of the double angle identity for the cosine, we can generate half-angle identities for the sine and cosine.





Ex 2: Use these identities to determine exact values.
a) sin (105°) =
$$5in\left(\frac{210°}{2}\right)$$
 (b) $tan\left(\frac{7\pi}{12}\right) = tan\left(\frac{2\pi}{2}\right)$
 $= + \sqrt{\frac{1-cos(210°)}{2}} = \sqrt{\frac{1-(\sqrt{3})}{2}}$ $= \frac{1-cos(2\pi)}{1+cos(2\pi)}$ $= \frac{1-cos(2\pi)}{1+cos(2\pi)}$ $= -\sqrt{\frac{1-(\sqrt{3}/2)}{2}}$ $= \sqrt{\frac{2+\sqrt{3}}{2}}$ $= \sqrt{\frac{2+\sqrt{3}}{2}}$ $= \sqrt{\frac{2+\sqrt{3}}{2}}$



Ex 3: If θ is an obtuse angle and $\sin \theta = \frac{3}{5}$, find the exact value of these using double/half angle identities.

Ex 4: Evaluate $\cos\left(\frac{7\pi}{12}\right)$ in two ways, using the half-angle identity and using the difference identity.

() using half-angle id.	(2) using difference id.
$\frac{\pi F}{2} > 26 = \frac{\pi F}{21} > 20$	$\cos\left(\frac{7\pi}{12}\right) = \cos\left(\frac{(9-2)\pi}{12}\right)$
$=\pm\left[1+\cos\left(\frac{\pi}{6}\right)\right]$	$\frac{1}{2} - \cos\left(\frac{9\pi}{12} - \frac{2\pi}{12}\right)$
$\sqrt{2}$	$= \cos\left(\frac{3\pi}{4} - \frac{\pi}{6}\right)$
$= \pm \sqrt{\frac{1+\sqrt{3}/2}{2}} \left(\frac{2}{2}\right)$	$= \cos\left(\frac{3\pi}{4}\right)\cos\left(\frac{\pi}{6}\right)$
$= \pm \sqrt{\frac{2 - \sqrt{3}}{4}}$	$+ \sin\left(\frac{3\Gamma}{4}\right) \sin\left(\frac{1\Gamma}{6}\right)$ $12/(3) - 15/(1)$
$\cos\left(\frac{4\pi}{12} + \frac{2-\sqrt{3}}{2}\right)$ which is if +	$= -\frac{\sqrt{2}}{2}\left(\frac{\sqrt{3}}{2}\right) + \frac{\sqrt{2}}{2}\left(\frac{1}{2}\right) \\= -\frac{\sqrt{6} + \sqrt{2}}{4}$
$\frac{2}{\left(2-\sqrt{3}\right)} = \frac{-\sqrt{2-\sqrt{3}}}{2}$	4