You will learn to:

- Determine whether a function has an inverse
- Find and verify the inverse function if there is one
- Sketch a function and its inverse

Reminders About a Function and Its Inverse

The inverse of a function, $f(x)$, is written $f^{-1}(x)$ (read f-inverse)
The -1 is NOT an exponent.
The original function must be 1 -to- 1 .
The graph $y=f^{-1}(x)$ (the inverse function) is a reflection of $y=f(x)$ across the line $y=x$.
An (a, b) pair on the function becomes a (b, a) pair on the inverse
$f\left(f^{-1}(x)\right)=x$ for every x in the domain of $f^{-1}(x)$, and vice versa.
The domain of $f^{-1}(x)$ is the range of $f(x)$ and vice versa.

Some questions about a familiar function:
What is the square root of 4 ?
What number(s) can I square to get 4 ?

$$
\begin{aligned}
& x^{2}=4, \text { so } x=? \\
& \sqrt{4}=?
\end{aligned}
$$

What is the principal square root of 4 ?
If $x=-3$, then $\sqrt{x^{2}}=$
If $x=-3$, then $(\sqrt{x})^{2}=$
so, $\sqrt{x^{2}}=$
and $(\sqrt{x})^{2}=$

As we determine inverses of our trigonometric functions, this is why

$\sin x=0.5$ has many solutions for x, and $\sin ^{-1}(0.5)=$? has only one answe

