3.7 ~ Graphing polar equations

In this lesson you will:

- Graph polar equations by point plotting.
- Use symmetry, zeros and maximum r-values to sketch graphs of polar equations.
- Recognize special polar graphs.

What do these equations represent?
These are all lines!
(1) $\theta=\beta \quad$ (β constant)

(radial line through the pole/origin)
(2) $r \cos \theta=a \quad \Leftrightarrow \quad x=a$
(a constant)
vertical line

(3) $r \sin \theta=b \quad \Longleftrightarrow \quad y=b$
(b constant)
horizontal
line

What about these? all of these egos represent circles (that go thru origin)
(1) $r=2 a \cos \theta$ (a constant)

$$
r^{2}=2 a(r \cos \theta) \Leftrightarrow x^{2}+y^{2}=2 a x
$$

(2) $r=2 b \sin \theta \quad$ (b constant)
circle centered at $x^{2}-2 a x+y^{2}=0$

(2)
$(0, b) \omega /$ radius $b \quad\left(x^{2}-2 a x+a^{2}\right)+y^{2}=a^{2}$
(3) $r=2 a \cos \theta+2 b \sin \theta(a, b$ constants)
circle centered at $(a, b)(x-a)^{2}+y^{2}=a^{2}$ $\omega /$ radius of $\sqrt{a^{2}+b^{2}}$
Example 1:
w) radius ot a

$$
r=4 \cos \theta
$$

Symmetry

Symmetry with respect to the line $\theta=\pi / 2 \quad(y$-coxis)

Replace (r, θ) with ($r, \pi-\theta$) or ($-r,-\theta$): If an equivalent equation results, the graph has this type of symmetry.

(2)

Symmetry with respect to the polar axis ($\theta=0$): (X-axis)
Replace (r, θ) with ($r,-\theta$) or ($-r, \pi-\theta$): If an equivalent equation results, the graph has this type of symmetry.

3

Symmetry with respect to the pole
(origin)
Replace (r, θ) with ($-r, \theta$) or ($r, \pi+\theta$): If an equivalent equation results, the graph has this type of symmetry.

If a polar equation passes a symmetry test, then its graph definitely exhibits that symmetry. However, if a polar equation fails a symmetry test, then its graph may or may not have that kind of symmetry.

Zeros and maximum r-values

Other helpful tools in graphing polar equations are knowing the values for θ for which $|r|$ is maximum and those for which $r=0$.

Example 2 : Graph $\quad r=\frac{1}{2}+\cos \theta$
Symmetry: (1) replace $(r, \theta) \omega /(-r,-\theta)$:
$-r=\frac{1}{2}+\cos (-\theta)$
$-r=\frac{1}{2}+\cos (\theta)$
$\Leftrightarrow r=\frac{1}{2}+\cos \theta$
(2) replace $(r, \theta) \omega /(r,-\theta): r=\frac{1}{2}+\cos (\theta)$ symmetry $\begin{gathered}\omega_{r} t \quad \theta=0 \\ (x-a x i s)\end{gathered} \quad \checkmark \quad r=\frac{1}{2}+\cos \theta$
(3) replace $(r, \theta) \omega /(-r, \theta): \quad-r=\frac{1}{2}+\cos \theta$

Ir| maximum: $r=\frac{1}{2}+\cos \theta \quad \nVdash r=\frac{1}{2}+\cos \theta$
max: when $\cos \theta=1 \Rightarrow r$ max value $=\left(\frac{1}{2}=\frac{3}{2}\right.$ when $\theta=0,2 \pi$, . .
Zero of $\mathrm{O}:$
$0=\frac{1}{2}+\cos \theta \Leftrightarrow \cos \theta=\frac{-1}{2} \Leftrightarrow \theta=\frac{2 \pi}{3}, \frac{\sqrt{2}}{3}$,

θ	0	$\pi / 4$	$\pi / 3$	$\pi / 2$	$2 \pi / 3$	$3 \pi / 4$	π
r	$\frac{3}{2}$	$\frac{1+\sqrt{2}}{2}$	1	$\frac{1}{2}$	0	$\frac{1-\sqrt{2}}{2}$	$\frac{-1}{2}$

$$
r=\frac{1}{2}+\cos \theta
$$

Limaçon

Limaçons

Example 3: Graph

$$
r=3 \sin 2 \theta
$$

Symmetry: try replacing (r, θ) w/ $(r,-\theta)$

$$
\begin{array}{cc}
-r=3 \sin (-2 \theta) & \text { symmetry wot } \\
-r=-3 \sin (2 \theta) & \theta=\frac{\pi}{2} \quad(y \text {-axis }) \\
r=3 \sin (2 \theta)
\end{array}
$$

$|r|$ maximum: $\quad r=3 \sin (2 \theta) \checkmark$
r is max when $\sin (2 \theta)= \pm 1 \Rightarrow 2 \theta=\frac{\pi}{2}, \frac{3 \pi}{2}$
Zero of r :

$$
\begin{aligned}
& \text { Zero of } \mathrm{O}=3 \sin (2 \theta) \\
& \sin (2 \theta)=0 \Rightarrow 2 \theta=0, \pi \\
& \begin{array}{|c|c|c|c|c|c|c|}
\hline \theta & 0 & \pi / 8 & \pi / 6 & \pi / 4 & \pi / 3 & \pi / 2 \\
\hline r & 0 & \frac{3 \sqrt{2}}{2} & \frac{3 \sqrt{3}}{2} & 3 & \frac{3 \sqrt{3}}{2} & 0 \\
\hline
\end{array}
\end{aligned}
$$

$$
\theta=\frac{\pi}{4}, \frac{3 \pi}{4}
$$

$$
\left(3, \frac{\pi}{4}\right)\left(-3, \frac{3 \pi}{4}\right)
$$

Roses

or
 $r=a \sin (n \theta)$, $r=a \cos (n \theta)$.\quad| a constant |
| :--- |
| n constant |

If n is odd, the rose is n-petalled. If n is even, the rose is $2 n$-petalled.

No reason to limit ourselves to n integer:

$n=3 / 4$

$n=1 / 5$

$n=2 / 5$

$$
n=3 / 5
$$

Or even rational:

$n=\sqrt{2}$

