3.7 ~ Graphing polar equations

In this lesson you will:

- · Graph polar equations by point plotting.
- Use symmetry, zeros and maximum *r*-values to sketch graphs of polar equations.
- · Recognize special polar graphs.

What do these equations represent?

These are all lines!

, (radial line through the pole/origin)

 $2^{r\cos\theta=a} \iff x=a$ (a constant)

Vertical line

 $3r\sin\theta = b$ \Rightarrow y=b (b constant) horizontal

What about these? all of these eggs represent circles (that go thru aigin)

(1) $r = 2a\cos\theta$ (a constant) $r^2 = 2a(\cos\theta)$ (b) $x^2 + y^2 = 2ax$ (2) $r = 2b\sin\theta$ (b) constant)

Circle cuntered at $x^2 - 2ax + y^2 = 0$ (10, b) $x^2 - 2ax + y^2 = 0$ (10, b) $x^2 - 2ax + a^2 + y^2 = a^2$ Circle cuntered at (a, b) $x^2 - 2ax + a^2 + y^2 = a^2$ Circle cuntered at (a, b) $x^2 - 2ax + a^2 + y^2 = a^2$ What about these?

(1) $x = 2a\cos\theta$ (a constant)

(2) $x = 2a\cos\theta$ (b) x = 2ax(3) $x = 2a\cos\theta + 2b\sin\theta$ (a) constants

(4) x = 2ax(5) $x = 2a\cos\theta + 2b\sin\theta$ (a) constants

(6) $x = 2a\cos\theta + 2b\sin\theta$ (a) constants

(6) $x = 2a\cos\theta + 2b\sin\theta$ (a) constants

(7) $x = 2a\cos\theta + 2b\sin\theta$ (a) constants

(8) $x = 2a\cos\theta + 2b\sin\theta$ (a) constants

(8) $x = 2a\cos\theta + 2b\sin\theta$ (a) constants

(9) $x = 2a\cos\theta + 2b\sin\theta$ (a) constants

(10) $x = 2a\cos\theta + 2b\sin\theta$ (a) constants

(11) $x = 2a\cos\theta + 2b\sin\theta$ (a) constants

(12) $x = 2a\cos\theta + 2b\sin\theta$ (a) constants

(13) $x = 2a\cos\theta + 2b\sin\theta$ (a) constants

(14) $x = 2a\cos\theta + 2b\sin\theta$ (b) constants

(15) $x = 2a\cos\theta + 2b\sin\theta$ (c) constants

(16) $x = 2a\cos\theta + 2b\sin\theta$ (c) constants

(17) $x = 2a\cos\theta + 2b\sin\theta$ (c) constants

(18) $x = 2a\cos\theta + 2b\sin\theta$ (c) constants

(18

 $2\pi/3$

 $3\pi/4$

 $5\pi/4$

 $3\pi/2$

 $r = 4\cos\theta$

1	r	4	252	2	0	-2	-212	-4	-512	0	2√2	4	
	•		4(1))				\	\		Ţ	CI	rcle centured
	/ ₁ .		,				`	\times	1			Q.	1 (2,0)
	. 9 /-	(O)	= (-	-۲/π)		7	$\langle \rangle$	$\langle \rangle$			$\langle \rangle$	by radius of 2
	(2	\ <u>\</u> \\	[])=((-5/12	1 TH)			$\langle \cdot \rangle$	$\langle \rangle$			
(้อ	Ť)=(<i>ν</i> <u>₹</u>	II\								
(֚֟֞֞֞֞֞֞֞֞֞֝֞֝֓֞֝֓֞֝֞֝֞֝֞֟֝֞֝֞֝֓֞֝֓֞֝֞֝֓֓֞֝֞֝֓֓֓֞֝֓֓֓֝֞֝֓֡֡֡)=(3)	· えっこう ・ えっこう	2)				$\backslash \rangle$				
•	٠, ٩	۷ را	(2)=	٦,	-512)	\rightarrow		$\langle \rangle$				
							/	X	7			1	

Symmetry

If a polar equation passes a symmetry test, then its graph definitely exhibits that symmetry. However, if a polar equation fails a symmetry test, then its graph may or may not have that kind of symmetry.

Zeros and maximum r-values

Other helpful tools in graphing polar equations are knowing the values for θ for which |r| is maximum and those for which r = 0.

Example 2: Graph
$$r = \frac{1}{2} + \cos\theta$$

Symmetry: (1) replace (r, θ) $\omega / (-r, -\theta)$: $-r = \frac{1}{2} + \cos(\theta)$
 $-r = \frac{1}{2} + \cos\theta$

(2) replace $(r, 0) \omega / (-r, -\theta)$: $r = \frac{1}{2} + \cos\theta$

Symmetry $\omega r + \theta = D$
 $(x - ax + is)$

(3) replace $(r, \theta) \omega / (-r, \theta)$: $-r = \frac{1}{2} + \cos\theta$
 $(x - ax + is)$

(4) $-x = \frac{1}{2} + \cos\theta$
 $-x = \frac{1}{2} + \cos\theta$

For invariant $-x = \frac{1}{2} + \cos\theta$
 $-x = \frac{1$

Limaçon

Limaçons

$$r = a \pm b \cos \theta$$

$$r = a \pm b \sin \theta$$

$$\frac{a}{b} \ge 2$$

Convex limaçon

$$1 < \frac{a}{b} < 2$$

Dimpled limaçon

a, b constants

(all these picture examples are the cosine varieties)

$$\frac{a}{b} = 1$$

Cardioid -always passes through pole

$$\frac{a}{b}$$
 < 1

Limaçon with inner loop

Example 3: Graph
$$r = 3\sin 2\theta$$

Symmetry: try replacing
$$(r, \theta) \omega / (r, -\theta)$$

$$-r = 3 \sin(-2\theta) \qquad \text{Symmetry } \omega + C$$

$$-r = -3 \sin(2\theta) \qquad \Theta = \frac{\pi}{2} (y - axis)$$

$$|r| \text{ maximum:} \qquad r = 3 \sin(2\theta) \sqrt{\frac{\pi}{2}}$$

|r| maximum:

r is max when
$$sin(20)=\pm 1 \Rightarrow 20=\frac{11}{2}, \frac{311}{2}$$

Zero of r:
$$0 = 3 \sin(20)$$

 $\sin(20) = 0 \Rightarrow 2\theta = 0$
 $\sin(20) = 0 \Rightarrow 2\theta = 0$
 $\cos(20) = 0 \Rightarrow 2\theta = 0$

θ	0	π/8	π/6	$\pi/4$	$\pi/3$	$\pi/2$
r	0	36	کارم	M	W W	0

Roses

If n is odd, the rose is n-petalled. If n is even, the rose is 2n-petalled.

No reason to limit ourselves to *n* integer:

Or even rational:

