Trig 3.3, 3.4 ~ Vectors

- Represent vectors as directed line segments.
- Perform basic vector operations and represent them graphically.
- Write vectors as a linear combination of unit vectors.
- Find the direction angles of vectors.
- Use vectors to solve real-life problems.

Find the dot product of two vectors.
Find the angle between two vectors using the dot product.

A vector is a directed line segment.

Parts of a vector:
tip
(note: in book see \vec{u} written as 4)

Two vectors are the same if they have the same direction and the same magnitude independent of position.

Opposite vectors have the same magnitude and opposite directions.

Select the two equivalent vectors:
Select the two opposite vectors:

$\vec{a}=\vec{d}$

In General:

$\theta \begin{aligned} & \text { The direction angle is found with trigonometry by using arctan to find the } \\ & \text { reference angle, then placing the angle in the correct quadrant. }\end{aligned}$

Vector arithmetic:
A vector may be multiplied by a scalar.

$$
\begin{aligned}
& 3 u=3\langle 3,2\rangle=\langle 9,6\rangle \\
& 2 v=-2\langle-2,1\rangle \\
& =\langle 4,-2\rangle
\end{aligned}
$$

$$
\boldsymbol{u}=\langle 3,2\rangle \quad \boldsymbol{v}=\langle-2,1\rangle
$$

 number

$$
\begin{aligned}
u+v=\langle 3,2\rangle+\langle-2,1\rangle & =\langle 3+-2,2+1\rangle \\
& =\langle 1,3\rangle
\end{aligned}
$$

$$
\begin{aligned}
u-2 v & =\langle 3,2\rangle-2\langle-2,1\rangle \\
& =\langle 3,2\rangle+\langle 4,-2\rangle \\
& =\langle 3+4,2+-2\rangle \\
& =\langle 7,0\rangle
\end{aligned}
$$

3.4 Vectors b

The unit vectors, \boldsymbol{i} and \boldsymbol{j} give us one more way to express our vectors.
unit vector \Rightarrow a vector $w /$ length of 1 .

$$
\|\vec{u}\|=1
$$

notation: \hat{u}
$\hat{\imath}, \hat{\jmath}$

$$
\begin{aligned}
\hat{\imath} & =\langle 1,0\rangle & \hat{\jmath}=\langle\langle, 1\rangle \\
\|\hat{\imath}\| & =\sqrt{1^{2}+0^{2}} & \text { note: } \hat{\imath}=\hat{x} \\
& =1 & \hat{\jmath}=\hat{y}
\end{aligned}
$$

$$
\begin{aligned}
\vec{u}=\langle 5,4\rangle= & 5\langle 1,0\rangle+4\langle 0,1\rangle \\
= & 5 \hat{\imath}+4 \hat{\jmath} \\
& \hat{\imath}^{2} x \text { dir } 4 \text { in } y \text { dir }
\end{aligned}
$$

$$
\begin{aligned}
\vec{v} & =\langle-3,0\rangle \\
& =-3 \hat{\imath} \\
\vec{\omega} & =\langle-2,10\rangle=-2 \hat{\imath}+10 \hat{\jmath}
\end{aligned}
$$

Unit Vectors
Ex $\vec{\omega}=\langle 3,4\rangle$ find $\hat{\omega}$

$$
\begin{aligned}
& \begin{array}{c}
=\sqrt{25}=5 \\
\hat{\omega}=\frac{\vec{\rightharpoonup}}{\|\vec{w}\|}=\frac{\vec{w}}{5}=\frac{\langle 3,4\rangle}{5}=\left\langle\frac{3}{5}, \frac{4}{5}\right\rangle
\end{array}
\end{aligned}
$$

Vectors: The dot product. (dot product of 2 vecs $=$ scalar)
The dot product of two vectors provides a formula which will help find the angle between two vectors.
$\operatorname{De} f_{n}$ algebraic $\vec{u} \cdot \vec{v}=\left\langle u_{1}, u_{2}\right\rangle \cdot\left\langle v_{1}, v_{2}\right\rangle$
geometric $\rightarrow u_{1} v_{1}+u_{2} v_{2}$
(2) $\vec{u} \cdot \vec{v}=\|\vec{u}\|\|\vec{v}\|^{2} \cos \theta$ (θ angle between \vec{u} ह \vec{V})
So given vectors $\boldsymbol{u}=\langle 3,-2\rangle$ and $\boldsymbol{v}=\langle-4,1\rangle$
Find the dot product: $\quad \vec{u} \cdot \vec{v}=\langle 3,-2\rangle \cdot\langle-4,1\rangle$

$$
\begin{array}{ll}
& =3(-4)+-2(1) \\
& =-14 \\
v_{0+1}+\vec{u}
\end{array}
$$

The cosine of the angle between the two vectors is the dot product divided by the product of the magnitudes of the two vectors.

$$
\cos \varnothing=\frac{\boldsymbol{u} \cdot \boldsymbol{v}}{\|\boldsymbol{u}\|\|\boldsymbol{v}\|}=\left(\frac{\stackrel{\rightharpoonup}{u}}{\|\vec{u}\|}\right) \cdot\left(\frac{\vec{v}}{\|\vec{v}\|}\right)=\hat{u} \cdot \hat{v}
$$

Find the angle between the two vectors above:

$$
\begin{aligned}
& \vec{u}=\langle 3,-2\rangle \\
& \vec{v}=\langle-4,1\rangle \\
= & \sqrt{3^{2}+(-2)^{2}} \\
= & \sqrt{9+4}=\sqrt{13} \\
= & \sqrt{(-4)^{2}+1^{2}} \\
= & \sqrt{17}
\end{aligned}
$$

$$
-14 \quad \mid \quad \vec{V}=\left\langle-H_{1}, 1\right\rangle
$$

$$
\left.\cos \theta=\frac{-14}{\sqrt{13} \sqrt{17}} \quad \right\rvert\,\|\vec{u}\|=\sqrt{3^{2}+(-2)^{2}}
$$

$$
\begin{aligned}
& \theta=\arccos \left(\frac{-14}{\sqrt{13} \sqrt{17}}\right) \\
& \theta=160.3^{\circ}
\end{aligned}
$$

$$
\|\vec{v}\|=\sqrt{(-4)^{2}+1^{2}}
$$

Orthogonal vectors: If two vectors are perpendicular to each other they are said to be orthogonal. What would the cosine of two orthogonal vectors be?

$$
\frac{20}{90^{\circ}} \text { if }
$$

(I)

$$
\vec{u} \cdot \vec{v}=3(1)+-2(4)
$$

(2) $\langle 4,-6\rangle$ and $\langle\underset{U}{\langle-3,-2\rangle}$

$$
=3-8=-5 \neq 0
$$

$$
\begin{aligned}
\vec{u} \cdot \vec{v} & =4(-3)+-6(-2) \\
& =-12+12=0 \Rightarrow \vec{u}+\vec{v} \perp
\end{aligned}
$$

$\Rightarrow \vec{u}$ not orthog. to

Application problem 1: - flying an airplane.
A plane is flying $\mathrm{N} 30^{\circ} \mathrm{E}$ at 400 mph and the wind is blowing west at 40 mph . What is the effective direction and speed of the plane?
(Draw a picture.:
Place your vectors for proper addition.

$$
\begin{aligned}
\theta & =60^{\circ} \quad\|\vec{p}\|=400 \\
\theta & =180^{\circ} \quad\|\vec{w}\|=40 \\
\vec{p} & =\|\vec{p}\|\langle\cos \theta, \sin \theta\rangle \\
& =400\left\langle\cos 60^{\circ}, \sin 60^{\circ}\right\rangle \\
& =400\langle\sqrt{3}, 3 / 2\rangle
\end{aligned}
$$

Remember the resultant is from the tail of the first to the tip of the second. $=\langle 200,200 \sqrt{3}\rangle$

$$
\|\vec{p}+\vec{w}\|
$$

$$
\begin{aligned}
& \stackrel{\rightharpoonup}{\omega}=\|\stackrel{\rightharpoonup}{\omega}\|\langle\cos \theta, \sin \theta\rangle \\
& =40\left\langle\cos 180^{\circ}, \sin 180^{\circ}\right\rangle \\
& =40\langle-1,0\rangle \\
& =\langle-40,0\rangle=-40 \hat{\imath} \\
& \vec{p}+\vec{\omega}=(200+-40) \hat{\imath} \\
& +200 \sqrt{3} \hat{\jmath} \\
& =160 \hat{\imath}+200 \sqrt{3} \hat{\jmath} \\
& =\langle 160,200 \sqrt{3}\rangle \mathrm{mph} \\
& \text { When computed on a } \\
& \text { calculator, the magnitude } \\
& \text { of the velocity of the } \\
& \text { plane is } 381.58 \mathrm{mph} \text {. } \\
& \text { The direction is } \mathrm{N} 25^{\circ} \mathrm{E} \text {. }
\end{aligned}
$$

Application problem 2 forces acting on an object:

Two forces are pushing on an object, one exerts 30 lbs of pressure and a second exerts 20 lbs of pressure. The angle between the two forces is 70°. What is the resultant force on the object?
note:
30 lbs = magnitude of that vector

$$
\text { want }\|\stackrel{\rightharpoonup}{r}\|=?
$$

$$
\|\vec{r}\|^{2}=30^{2}+20^{2}
$$

$$
-2(30)(20) \cos 110^{\circ}
$$

$$
\|\vec{r}\|=\sqrt{30^{2}+20^{2}-2(30)(20) \cos 110^{\circ}}
$$

When computed on a
calculator he resultant is
41.36 lb .

Application 3: Using a ramp to lift heavy objects.
A 500-lb rock is being wheeled up a 30 degree ramp. What force is necessary to keep it from rolling back down the ramp? What is the weight the ramp is actually supporting?
note:
500 lb ramp (already includes gravity)

$$
\begin{aligned}
& \|\vec{y}\|= \\
& \|\vec{w}\|= \\
& 30
\end{aligned}
$$

$$
\frac{500}{\left\|\overrightarrow{0^{\circ}}\right\|} \|
$$

$\|\vec{u}\|$ that ramp is supporting $\|\vec{u}\|=$ magnitude of frore require ed to keep weight in same place

$$
\begin{aligned}
& \cos 30^{\circ}=\frac{\|\vec{w}\|}{500} \\
& \Leftrightarrow \quad\|\vec{u}\|=500 \cos 30^{\circ} \quad(\mathrm{lbs}) \\
& \|\vec{u}\|=500 \sin 30^{\circ} \quad(\mathrm{lbs}) \\
& \|\vec{w}\|=250 \sqrt{3} \text { lbs } \simeq 433 \text { lbs } \\
& \|\vec{u}\|=250 \text { lbs }
\end{aligned}
$$

