Trig 3.2 ~ The Law of Cosines

* Prove the law of cosines.
* Use the law of cosines to solve for parts of a triangle.
* Use the law of sines and the law of cosines to solve for parts of a triangle.
* Solve real life problems using these laws.
* Use two ways to find the area of a triangle.

Remembering Geometry Congruence Theorems:

Law of Cosines:
In any triangle, ABC with sides $\mathrm{a}, \mathrm{b}, \mathrm{c}$:

$$
c^{2}=a^{2}+b^{2}-(2 a b) \cos C
$$

It looks like the Pythagorean theorem!

PROOF: Given: $\triangle A B C$ with sides a, b, c
Prove: $a^{2}=b^{2}+c^{2}-(2 b c) \cos A$

Example 1 SAS:
Triangle $A B C$ has $c=15 \mathrm{~cm}, \mathrm{~b}=12 \mathrm{~cm}$ and $\angle \mathrm{A}$ measures 85°. Solve for the remaining three parts of the triangle.
*Draw a picture.
*Label parts.
*Determine which law to use.
*Solve.

Example 2 SSS:

Given Δ RST with sides $r=18 ", s=15 "$, and $t=10$ ". Find the three angles.

Draw
Label
Equation
Solve

Example 3:
A plane flies 280 miles, turns 85° and flies another 350 miles. How far is it from the starting point?

Draw a picture.
Label it.
Determine which law to use.
Solve it.

The area of a triangle in two ways:
Area $=1 / 2 a b \sin C$
Area $=\sqrt{\mathrm{s}(\mathrm{s}-\mathrm{a})(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})} \quad$ where $\mathrm{s}=$ semiperimeter, $\frac{\mathrm{a}+\mathrm{b}+\mathrm{c}}{2}$
The second is called Heron's formula.

Find the area of a triangle with sides $7 \mathrm{~cm}, 12 \mathrm{~cm}$, and 13 cm .

Use first formula:
Use Heron's formula
Area $=1 / 2 a b \sin C$

