TRIG 3.1 ~ Law of Sines

- Prove the Law of Sines
- Use the Law of Sines to solve triangles.
- Identify when the solution to the triangle is ambiguous.
- Find the area of triangles.

We will now apply our techniques to solving oblique triangles (those with no right angles.)
How to label sides and angles:

Law of Sines: If $A B C$ is a triangle with sides a, b, c then
$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$

Proof: Given triangle ABC
Draw altitude $\overline{\mathrm{CD}}$ to side $\overline{\mathrm{AB}}$ Let $C D=h$

C
In $\triangle A D C, \sin A=$
In $\triangle B C D, \sin B=$

Solve each for $\mathrm{h}=$
$h=$

Example 1:
Solve for the missing sides and angle.

Example 2: What if we are looking for an angle?
Triangle MKL with $\angle \mathrm{M}=100^{\circ}$
$m=15^{\prime} \quad k=10^{\prime}$

Solve for the remaining parts of the triangle.

Example 3: The ambiguous case

Remember from Geometry the dreaded SSA?

Given triangle RST with $\angle R=40^{\circ}, t=8 \mathrm{~cm}$ and $r=6 \mathrm{~cm}$, solve for thest of the triangle.

Finding the area of a traingle.

Area of triangle $=1 / 2 \mathrm{bh}$

