TRIG 3.1 ~ Law of Sines

- Prove the Law of Sines
- Use the Law of Sines to solve triangles.
(- Identify when the solution to the triangle is ambiguous.
- Find the area of triangles.

$$
\sin 120^{\circ}=\sin 60^{\circ}
$$

We will now apply our techniques to solving oblique triangles (those with no right angles.) How to label sides and angles:

Law of Sines: If $A B C$ is a triangle with sides a, b, c then
$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
$\alpha \quad \beta \quad V$

Proof: Given triangle $A B C$
Draw altitude $\overline{\mathrm{CD}}$ to side $\overline{\mathrm{AB}}$
Let $C D=h$

In $\triangle A D C, \sin A=\frac{h}{b}$
$\ln \triangle B C D, \sin B=\frac{h}{a}$
Solve each for $h=h=b \sin A \quad h=a \sin B$ $b \sin A=a \sin B$
$\frac{b}{\sin B}=\frac{a}{\sin A}=\frac{c}{\sin C}$
$\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$

Example 3: The ambiguous case

Remember from Geometry the dreaded SSA?

Given triangle RST with $\angle R=40^{\circ}, t=8 \mathrm{~cm}$ and $r=6 \mathrm{~cm}$, solve for the

$$
\begin{aligned}
& \frac{\sin 40^{\circ}}{6}=\frac{\sin T}{8} \\
& \sin T=\frac{8 \sin 40^{\circ}}{6} \approx .85705 \mathrm{~m} \\
& \angle T \approx 590^{\circ} \\
& \angle T \approx 121^{\circ} \\
& \angle T=121^{\circ} \angle S=180^{\circ}-12 i-40^{\circ} \\
& \frac{6}{\sin 40^{\circ}}=\frac{S}{\sin 19^{\circ}} \\
& S \approx 3.04 \mathrm{~cm}
\end{aligned}
$$

Two viable triangles. Ambiguous!

