TRIG 2.3 ~ Solving Trigonometric Equations

You will learn techniques for solving equations involving trigonometric functions.

Review of inverse functions:

$$
\left\{\begin{array}{rl}
\left\{\sin ^{-1}(1 / 2)=x\right. & \sin ^{-1}(-1 / 2)=x \\
\frac{\pi}{6}=x & x=\frac{-\pi}{6}
\end{array}\right.
$$

$\xrightarrow[x]{\sim}=\left\{\begin{array}{l}\frac{\pi}{6}+2 K \pi \\ \frac{5 \pi}{6}+2 k \pi\end{array}(K \in\right.$ integers $)$

$$
\sin x=-1 / 2
$$

$$
\checkmark \sin x=1 / 2, \quad 0 \leq x<2 \pi
$$

$$
\sin x=-1 / 2, \quad 0 \leq x<2 \pi
$$

$$
x=\underline{=}
$$

$$
x=7 \frac{\pi}{6}, \frac{11 \pi}{6}
$$

$$
\tan ^{-1}(1)=\frac{\pi}{4}
$$

$$
\tan ^{-1}(-1)=-\frac{\pi}{4}
$$

Use algebra combined with the inverse trig functions.
a)

$$
\begin{aligned}
3 \cot ^{2} x & =1 \\
\cot ^{2} x & =\frac{1}{3} \\
\cot x & = \pm \frac{1}{\sqrt{3}}
\end{aligned}
$$

Solutions on $[0,2 \pi)$

$$
[0,2 \pi) \rightarrow x=\pi / 3, \frac{2 \pi}{3}, \frac{4 \pi}{3}, \frac{5 \pi}{3}
$$

All solutions

$$
x=\frac{\pi}{3}+K \pi
$$

$$
x=\frac{2 \pi}{3}+k \pi
$$

b)

$$
\begin{aligned}
& \underline{2} \sin 2 x=-\sqrt{3} \\
& \sin 2 x=\frac{-\sqrt{3}}{2} \\
& 2 x=-\frac{\pi}{3} \rightarrow \text { or } \\
& 2 x=\frac{4 \pi}{3}+2 k \pi=\frac{3 \pi}{3}+2 k \pi \\
& x=\frac{2 \pi}{3}+k \pi \quad 4 \text { answers } \\
& x=\frac{5 \pi}{6}+k \pi \quad \text { on }[0,2 \pi)
\end{aligned}
$$

c) $\sec (x / 2)=-2$

$$
\cos \frac{x}{2}=-\frac{1}{2}
$$

$$
\frac{x}{2}=\frac{2 \pi}{3}+2 k \pi
$$

$$
\begin{array}{rlrl}
\frac{x}{2} & =\frac{4 \pi}{3}+2 k \pi & \\
x & =\frac{4 \pi}{3}+4 k k \pi & & {[0,2 \pi)} \\
& =\frac{8 \pi}{3}+4 k \pi & & \Rightarrow \frac{4 \pi}{3}
\end{array}
$$

Some algebra may be required. You may need to multiply or factor...
a) Solve for x on the interval $[0,2 \pi)$

$$
\begin{aligned}
& \sin x \cos x-\cos x=0 \\
& \cos x(\sin x-1)=0 \\
& \cos x=0 \quad \begin{array}{l}
\sin x-1=0 \\
x=\frac{\pi}{2}, \frac{3 \pi}{2} \quad \frac{\pi}{2}
\end{array}
\end{aligned}
$$

You may need to put the expression in terms of the same function using the identities.

$$
\cos ^{2} x=1-\sin ^{2} x
$$

b) Solve for x on the interval $[0,2 \pi)$

$$
\begin{aligned}
& \sin x+2 \cos ^{2} x-2=0 \\
& \sin x+2\left(1-\sin ^{2} x\right)-2=0 \\
& \sin x+2-2 \sin ^{2} x-2=0 \\
& \sin x-2 \sin ^{2} x=0
\end{aligned}
$$

$$
\sin x(1-2 \sin x)=0
$$

$$
\sin x=0 \quad \sin x=\frac{1}{2}
$$

$$
x=0, \pi \quad x=\frac{\pi}{6}, \frac{5 \pi}{6}
$$

$$
x \in\left\{0, \pi, \frac{\pi}{6}, \frac{5 \pi}{6}\right\}^{6}
$$

Using inverse trig functions to state a solution.

$$
\frac{\sin ^{2} x}{\cos ^{2} x}+\frac{\cos ^{2} x}{\cos ^{2} x}=\frac{1}{\cos ^{2} x}
$$

State the solutions to this equation:

$$
\tan ^{2} x+1=\sec ^{2} x
$$

Common error:
if $a b=0 \quad a=0$ or $b=0$
if $a b=1$ no information

$$
\sin x(\cos x-1)=2
$$

Cannot du

$$
\begin{aligned}
& \sin x \cos x=\sin x \\
& \sin x \cos x-\sin x=0 \\
& \sin x(\cos x-1)=0
\end{aligned}
$$

