
TRIG 2.3 ~ Solving Trigonometric Equations

•

You will learn techniques for solving equations involving trigonometric functions.

Review of inverse functions:

$$\sin^{-1}(-1/2) = x$$

 $\chi = -\frac{\pi}{6}$

$$\sin x = -1/2$$

$$\chi_{-} \begin{cases} \frac{7\pi}{6} + 2\kappa \pi \\ \frac{11\pi}{6} + 2\kappa \pi \end{cases}$$

 $\sin x = -1/2, \quad 0 \le x < 2\pi$ $\mathcal{X} = -7\frac{\pi}{2}, \frac{1}{6}$

Solving a trigonometric equation

Use algebra combined with the inverse trig functions. a) $3\cot^2 x = 1$ $\cot^2 x = \frac{1}{3}$ $(ot^2 x = \pm \frac{1}{\sqrt{3}}$ Solutions on [0,2 π) $\left[(0,2\pi) \xrightarrow{2} \chi = \frac{\pi}{3}, \frac{2\pi}{3}, \frac{4\pi}{3}, \frac{5\pi}{3}\right]$ $\left[(0,2\pi) \xrightarrow{2} \chi = \frac{\pi}{3}, \frac{2\pi}{3}, \frac{4\pi}{3}, \frac{5\pi}{3}\right]$ $\left[(0,2\pi) \xrightarrow{2} \chi = \frac{\pi}{3}, \frac{2\pi}{3}, \frac{4\pi}{3}, \frac{5\pi}{3}\right]$

b)
$$2 \sin 2x = -\sqrt{3}$$

$$2x = -\frac{\pi}{3} \text{ or } 2x = \frac{5\pi}{2} + 2k\pi$$

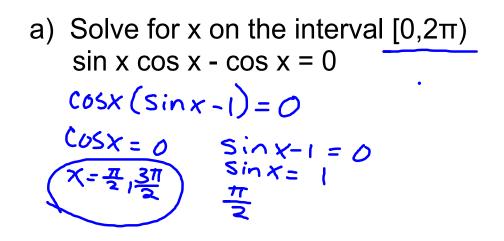
$$2x = \frac{7\pi}{3} + 2k\pi$$

$$x = \frac{7\pi}{3} + 2k\pi$$

$$x = \frac{2\pi}{3} + k\pi$$

$$x = \frac{5\pi}{6} + k\pi$$

$$x = \frac{5\pi}{6} + k\pi$$


$$x = \frac{5\pi}{6} + k\pi$$

$$x = \frac{7\pi}{3} + 2k\pi$$

$$x = \frac{4\pi}{3} + 2k\pi$$

3

Some algebra may be required. You may need to multiply or factor...

You may need to put the expression in terms of the same function using the identities. $(\gamma_{x}) = (-s_{n})^{2} \chi$

b) Solve for x on the interval
$$[0,2\pi)$$

sin x + 2 cos²x - 2 = 0
Sin X + 2 (1 - sin²k) - 2 = 0
Sin X + 2 - 2 sin²k - 2 = 0
Sin X - 2 sin²k = 0
Sin X - 2 sin²k = 0
Sin x = 0 sin x = $\frac{1}{2}$
X = 0, π X = $\frac{\pi}{2}$, $\frac{5\pi}{2}$
X $\in \{0, \pi, \frac{\pi}{2}, \frac{5\pi}{2}\}$

Using inverse trig functions to state a solution.

<u>sin²x + (osx=</u>

State the solutions to this equation:

tanx + 1= secX $sec^2x - 2tan x = 4$ 7anx+1-2tanx-4=0 $tan^{3}x - 2tanx - 3 = 0$ (tan x-3)(tan x+1)=(tanx=3 tanx=-1 $\chi = (an^{-1}(3) + k\pi \approx 1.25 + K\pi)$ $\chi = -\pi + k\pi$

Common error:
if
$$ab = 0$$
 $a = 0$ or $b = 0$
if $ab = 1$ no information
 $Sinx(cosx-1) = 2$
Cannot du
 $Sinx(cosx = Sint)$
 $Sinx(cosx - Sinx = 0)$
 $Sinx(cosx - 1) = 0$