2.1 Trigonometry ~ Fundamental Identities

*You will recognize and write the fundamental identities.

* Use the fundamental identities to evaluate, simplify and rewrite trigonometric expressions.

Terminology

Expression \Rightarrow fragment of a sentence
ex

$$
\begin{aligned}
& 3 x-4 x+5+7 \\
= & -x+12
\end{aligned}
$$

Equation \Rightarrow complete sentence

$$
\text { ex } \quad 3 x-4 x=5+7
$$

turf stout $-x=12$

$$
x=-12
$$

Identity \Rightarrow particular kind of equation

$$
\sin ^{2} x+\cos ^{2} x=1
$$

Identities we already know:
Reciprocal identities

$$
\csc x=\frac{1}{\sin x} \quad \sec x=\frac{1}{\cos x}
$$

Quotient identities

$$
\tan x=\frac{\sin x}{\cos x} \quad \cot x=\frac{\cos x}{\sin x}
$$

Pythagorean identities

$$
\text { (1) } \quad \sin ^{2} x+\cos ^{2} x=1
$$

(3)
(2)

$$
\begin{aligned}
& \frac{\sin ^{2} x+\cos ^{2} x}{\sin ^{2} x}=\frac{1}{\sin ^{2} x} \\
& 1+\frac{\cos ^{2} x}{\sin ^{2} x}=\frac{1}{\sin ^{2} x} \\
& 1+\cot ^{2} x=\csc ^{2} x
\end{aligned}
$$

(3) $\tan ^{2} x+1=\sec ^{2} x$

Cofunction identities

$$
\begin{aligned}
& \sin \left(\frac{\pi}{2}-\theta\right)=\cos \theta \\
& \tan \left(\frac{\pi}{2}-\theta\right)=\cot \theta
\end{aligned}
$$

Examples of using identities:
a. To solve a problem:
$\sec u=-5 / 4$ and $\tan u>0 \quad$ Find $\sin u$.

$$
\frac{16}{25}+\sin ^{2} u=1
$$

b. To simplify an expression:
($\cos u$ negative, $\sin u$ negative)

$$
\cos u=\frac{-4}{5}
$$

$$
\left(\frac{-4}{5}\right)^{2}+\sin ^{2} x=1
$$

$$
\sin u=\frac{-3}{5}
$$

$$
\underbrace{\frac{1}{\tan 2 x+1}}_{\text {expression }}=\frac{1}{\sec ^{2} x}=\cos ^{2} x
$$

$$
\Rightarrow \frac{1}{\tan ^{2} x+1}=\cos ^{2} x \quad \text { identity }
$$

c. Simplify $\cos t\left(1+\tan ^{2} t\right)$

$$
\begin{aligned}
& =\cos t\left(\sec ^{2} t\right) \\
& =\cos t\left(\frac{1}{\cos ^{2} t}\right)=\frac{1}{\cos t}=\sec t
\end{aligned}
$$

d. Use algebra on trigonometric expressions

$$
\begin{array}{l|l}
\text { Factor: } \sin ^{2} x \sec ^{2} x-\sin ^{2} x= \\
\sin ^{2} x\left(\sec ^{2} x-1\right) \\
=\sin ^{2} x \tan ^{2} x
\end{array} \quad \begin{aligned}
& \tan ^{2} x+1=\sec ^{2} x \\
& \tan ^{2} x=\sec ^{2} x-1
\end{aligned}
$$

e. Simplify: $\frac{\cos 2 x-4}{\cos x-2}$

$$
=\frac{(\cos x-2)(\cos x+2)}{(\cos x-2)}=\cos x+2
$$

f. Multiply: $(3-\sin x)(3+\sin x)$

$$
\begin{aligned}
& =9+3 \sin x-3 \sin x-\sin ^{2} x \\
& =9-\sin ^{2} x
\end{aligned}
$$

Try these:
a. Simplify: $\frac{\cot ^{2} x}{\csc ^{2} x}$

$$
\begin{aligned}
& =\frac{\cos ^{2} x}{\sin ^{2} x\left(\frac{1}{s^{2} x}\right)} \\
& =\cos ^{2} x
\end{aligned}
$$

$$
\left.\begin{aligned}
& \text { b. Simplify: } \tan x-\frac{\sec ^{2} x}{\tan x} \\
& =\tan x\left(\frac{\tan x}{\tan x}\right)-\frac{\sec ^{2} x}{\tan x} \\
& =\frac{\tan ^{2} x-\sec ^{2} x}{\tan x} \\
& =\frac{-1}{\tan x}=-\cot x
\end{aligned} \right\rvert\, \begin{aligned}
& \tan ^{2} x+1=\tan ^{2} x-\sec ^{2} x=-1
\end{aligned}
$$

$$
\text { c. Simplify: } \begin{aligned}
& \frac{\tan ^{2} x}{\sec x+1} \\
= & \frac{\sec ^{2} x-1}{\sec x+1} \\
= & \frac{(\sec x-1)(\sec x+1)}{(\sec x+1)} \\
= & \sec x-1
\end{aligned}
$$

