2.1 Trigonometry ~ Fundamental Identities

- *You will recognize and write the fundamental identities.
- * Use the fundamental identities to evaluate, simplify and rewrite trigonometric expressions.

Terminology

Expression > fragment of a sentence

Equation > complete sentence

$$\frac{-ex}{5} \quad 3x-4x=5+7$$

$$\frac{-x+12}{4} \quad -x=12$$

Identity => particular kind of equation $\sin^2 x + \cos^2 x = 1$

Identities we already know:

Reciprocal identities

$$Csc X = \frac{1}{sin x} \qquad sec X = \frac{1}{cos X}$$

Quotient identities $\tan x = \frac{\sin x}{\cos x}$ $\cot x = \frac{\cos x}{\sin x}$

Cofunction identities

$$\sin(\frac{\pi}{2}-0)=\cos\theta$$

Examples of using identities:

a. To solve a problem: $\sec u = -5/4$ and $\tan u > 0$ Find $\sin u$.

(cos u negative, sin u negative)
$$\cos u = -\frac{4}{5}$$

$$(\frac{-4}{5})^2 + \sin^2 u = 1$$

$$\frac{16}{25} + \sin^2 u = 1$$

$$\sin u = \frac{\pm 3}{5}$$

$$\sin u = \frac{\pm 3}{5}$$

$$\sin u = \frac{\pm 3}{5}$$

b. To simplify an expression:

$$\frac{1}{\tan^2 x + 1} = \frac{1}{\sec^2 x} = \cos^2 x$$
expression

c. Simplify COs t (1+tan2t)

=
$$cost$$
 (sec^2t)
= $cost$ (cos^2t) = $cost$ = $sect$

d. Use algebra on trigonometric expressions

Factor:
$$\sin^2 x \sec^2 x - \sin^2 x =$$

$$\sin^2 x \left(\sec^2 x - 1 \right)$$

$$= \sin^2 x + \tan^2 x$$

$$= \sin^2 x + \tan^2 x$$

e. Simplify:
$$\frac{\cos^2 x - 4}{\cos x - 2}$$

$$= (\cos x - 2)(\cos x + 2)$$

$$= \cos x + 2$$

f. Multiply: $(3 - \sin x) (3 + \sin x)$

$$= 9 + 3 \sin x - 3 \sin^2 x$$
$$= 9 - \sin^2 x$$

Try these:

a. Simplify:
$$\frac{\cot^2 x}{\csc^2 x}$$

$$= \frac{\cos^3 x}{\sin^2 x}$$

b. Simplify:
$$\tan x - \frac{\sec^2 x}{\tan x}$$
 $= \frac{\tan x}{\tan x} - \frac{\sec^2 x}{\tan x}$
 $= \frac{\tan x}{\tan x} - \frac{\sec^2 x}{\tan x}$
 $= \frac{\tan x}{\tan x} - \frac{\sec^2 x}{\tan x}$

$$\tan^2 x + 1 = \sec^2 x$$

 $\tan^2 x - \sec^2 x = -1$

c. Simplify:
$$tan^2x$$
 sec $x + 1$

$$= \frac{\sec^2 x - 1}{\sec x + 1}$$

$$= \frac{\sec x - 1}{\sec x + 1}$$

$$= \frac{\sec x - 1}{\sec x + 1}$$

$$= \sec x - 1$$

$$\tan^2 x + 1 = \sec^2 x$$

 $\tan^2 x = \sec^2 x - 1$