1.6 ~ Graphs of Other Trigonometric Functions

You will learn to:

- Sketch graphs of tangent and cotangent functions.
- Sketch graphs of secant and cosecant functions.
- Analyze the transformations of these functions.

$$
f(x)=\cot x=\frac{\cos x}{\sin x}
$$

$$
f(x)=\sec x=\frac{1}{\cos x}
$$

Sketch $y=\cos x$
Then plot asymptotes and points on $y=\sec x$

Range: $y \in(-\infty,-1] \cup[1, \infty)$ Venticsymptotes:

$$
x=\frac{(2 n+1) \pi}{2}, n \in \mathbb{Z}
$$

$$
f(x)=\csc x=\frac{1}{\sin x}
$$

Period: 2π
Domain: $\begin{aligned} x \in \mathbb{R}, \\ x \neq n \pi\end{aligned}, n \in \mathbb{Z}$
Range: $y \in(-\infty ; 1] \cup[1, \infty)$
Asymptotes:

$$
x=n \pi, n<2
$$

Example 1: Graph this function with transformations.

(1)

$y=\sec x$ has
period of 2π
Period: $\frac{2 \pi}{2}=\pi$
Domain: $x \in R, x=\frac{(22 n+1) \pi}{4}$
Range: $(-\infty,-3] \cup[3, \infty)$ vertical Asymptotes:

$$
\begin{aligned}
& x=\frac{\pi}{4}, \pm \frac{3 \pi}{4}, \frac{5 \pi}{4}, \ldots \\
& x_{x}^{2}=\frac{(2 n+1) \pi}{4}, n \in \mathbb{R}
\end{aligned}
$$

Example 3:
a) Write an equation for each of these graphs, assuming there are no transformations.
(1)

(2)

(3)

4.

(a) $y=\cot x$
(b) $y=\tan \left(-\left(x-\frac{\pi}{2}\right)\right)$
or $y=-\tan \left(x-\frac{\pi}{2}\right)$
$(\tan x=f(x)$ - hora. Reflect is odd f_{n}) then shift to right by $\pi / 2$
(a) $y=\sec x$
(a) $y=\tan x$
(a) $y=\csc x$
(b) same shape as $y=\sec x$ but shifted.
right by $\frac{\pi}{2}$
$y=\sec \left(x-\frac{\pi}{2}\right)$

$$
\Rightarrow \sec \left(x-\frac{\pi}{2}\right)=\csc x
$$

Note

$\left.\underbrace{$| odd fins: | |
| :--- | :--- |
| $y=\sin x \quad y$ | $y=\csc x$ |
| $y=\cot x$ | |}$_{\text {even fur: } y=\cos x \quad y=\sec x} \right\rvert\,$| $f(-x)=-f(x)$ |
| :--- |
| $f(-x)=f(x)$ |

Graphs of the Six Trigonometric Functions

$y=\sin x$
Domain:
All Reals
Range:
$[-1,1]$
Period: 2π

$y=\tan x$
Domain:
All $x \neq \frac{\pi}{2}+n \pi$
Range:
All Reals
Period: π

$y=\csc x$
Domain:
All $x \neq n \pi$
Range:
$(-\infty,-1] \cup(1, \infty)$
Period: 2π

$y=\cos x$
Domain:
All Reals
Range:
$[-1,1]$
Period: 2π

$y=\cot x$
Domain:
All $x \neq n \pi$
Range:
All Reals
Period: π

$y=\sec x$
Domain:
All $x \neq \frac{\pi}{2}+n \pi$
Range:
$(-\infty,-1] \cup[1, \infty)$
Period: 2π

