1.6 ~ Graphs of Other Trigonometric Functions

You will learn to:

- Sketch graphs of tangent and cotangent functions.
- Sketch graphs of secant and cosecant functions.
- Analyze the transformations of these functions.

$$f(x) = \tan x = \frac{\sin x}{\cos x}$$

$$R = \text{text} \# S$$

$$Z = \text{integers}$$
Asymptotes: $\cos x = 0$

Period:

Domain:
$$X \in \mathbb{R}$$

 $X \neq (2h+1)\Pi$, $n \in \mathbb{Z}$
Range: $Y \in \mathbb{R}$

Asymptotes:

$$X = \frac{(2n+1)_{\parallel}}{2}, n \in \mathbb{Z}$$

$$f(x) = \cot x = \frac{\cos x}{\sin x}$$

$$f(x) = \sec x = \frac{1}{\cos x}$$

Sketch $y = \cos x$

Then plot asymptotes and points on y = sec x

Period:

Domain: X & R $x \neq (2n+1)\pi, n \in \mathbb{Z}$

Range: 4 € (-∞,-1] U (1,∞)

Asymptotes:

ymptotes:

$$X = \frac{(2n+1)\pi}{2}, n \in \mathbb{Z}$$

$$f(x) = \csc x = \frac{1}{\sin x}$$

Period: 21

Domain: XER, X + nT, n = Z Range: y = (->;1] U(1,>)

Asymptotes:

x=mT, n 4 2

Example 1: Graph this function with transformations.

Period:
$$\frac{2\pi}{2} = \pi$$

Range:
$$(-\infty,-3]$$
 U $[3,\infty)$
Asymptotes:

Example 3:

b) Write each function that is a co-function as a transformation of another function.

(a) y = tanx

(b) same shape as y=secx but shifted right by I y= Sec(x-II)

Note

odd fins: $y = \sin x$ $y = \csc x$ $y = \tan x$ $y = \cot x$ even fins: $y = \cos x$ $y = \sec x$ f(-x) = f(x)

Graphs of the Six Trigonometric Functions

 $y = \sin x$

Domain: All Reals

Range: [-1, 1]

Period: 2π

 $y = \cos x$

Domain: All Reals

Range: [-1, 1]

Period: 2π

 $y = \tan x$

 $\begin{array}{l} \text{Domain:} \\ \text{All } x \neq \frac{\pi}{2} + n\pi \end{array}$

Range: All Reals

Period: π

 $y = \cot x$

Domain: All $x \neq n\pi$

Range: All Reals

Period: π

 $y = \csc x$

Domain: All $x \neq n\pi$

Range: $(-\infty,-1]\cup[1,\infty)$

Period: 2π

 $y = \sec x$

Domain: All $x \neq \frac{\pi}{2} + n\pi$

Range: $(-\infty,-1]\cup[1,\infty)$

Period: 2π

