1.5 ~ Graphs of Sine and Cosine Functions

In this lesson you will:

- Sketch the graphs of basic sine and cosine functions.
- Use amplitude and period to help sketch graphs
- Sketch translations of these functions

How can you graph $y=2 \sin \left(x-\frac{\pi}{3}\right)+1$?
This is a transformation of the basic $y=\sin x$ curve
It may help to remember transformations to one of the algebraic functions.
How does the graph of $y=-3(x+2)^{2}-1$ relate to the graph of $y=x^{2}$?

[^0]$y=a(x-h)^{2}+k$
$y=a \sin (b x+c)+d$
What effect do a, b, c and d have on the graph of trigonometric functions?

Let's look at it one part at a time:

$y=a \sin x$
Amplitude: |a|
Example 1: Graph each of these.

Period =

Example 2: Graph each of these

$y=\sin (2 x)$

$y=\cos \left(\frac{1}{2} x\right)$

$y=\sin (x-c)$
Horizontal shift =
Example 3: Graph each of these

$$
y=\sin (x+\pi)
$$

$y=\cos \left(x-\frac{\pi}{2}\right)$

$y=\sin (b x-c)$

Period $=$
Horizontal shift =
Example 3: Graph each of these.
$y=\sin (2 x-\pi)$

$y=\cos \left(\left(\frac{1}{2}\right) x+\frac{\pi}{2}\right)$

$$
y=\sin (x)+d=\sin x+d
$$

Vertical Shift

Example 4: Graph each of these.

So, when we graph a sine or cosine function there are these things to

Example 5: Sketch this function

Example 6: Look at each of these graphs and write an equation in the form of

$y=a \sin (b(x-h))+k \quad$ or $y=a \cos (b(x-h))+k$
x-axis tic marks $=\frac{\pi}{2}, \quad y$-axis tic marks $=1$

Here are some applets in case you want to play with the transformation variables.

://www.analyzemath.com/trigonometry/sine.htm

http://tube.geogebra.org/student/m45354?mobile=true

[^0]: In general, remember the effect of a, h and k on the graph of $y=x^{2}$

