You will

* Evaluate trigonometric functions using the unit circle.
* Use the domain and period to evaluate sine and cosine functions
* Identify the reference angle of any angle on the unit circle.
* Use a calculator to evaluate trigonometric functions.

The Unit Circle

Trigonometric functions

Sine $t=$

Cosine $t=$

Tangent $t=$
Cotangent $t=$

Periodic means what??

Back to the unit circle -- Answer each of these and come up with a conjecture.

$\sin \left(\frac{\pi}{3}\right)$	$\sin \left(\frac{3 \pi}{4}\right)$
$\sin \left(-\frac{\pi}{3}\right)$	$\sin \left(-\frac{3 \pi}{4}\right)$
$\cos \left(\frac{\pi}{3}\right)$	$\cos \left(\frac{3 \pi}{4}\right)$
$\cos \left(-\frac{\pi}{3}\right)$	$\cos \left(-\frac{3 \pi}{4}\right)$

Exercise 1:

a. Evaluate the six trigonometric functions of t if $t=-5 \pi / 6$.
b. Evaluate the six trigonometric functions of t if $t=2 \pi / 3$.

Practice these

Exercise 2:

If $\sin t=-0.5$ and $\pi<t<3 \pi / 2$, determine the other five trigonometric functions of t.

Exercise 3:

If $\sec t=-5 / 3$ and t is in the third quadrant, determine the other five trigonometric functions of t.

One more thing - A reference angle is

Positive
Acute
Shares the terminal side with the original angle and has one side on the x-axis.
If the angle is in radians, the reference angle is in radians.
If the angle is in degrees, the reference angle is in degrees.

Every angle θ has a reference angle θ^{\prime}.

Note: The quadrant angles have no reference angle.

Examples:

$$
\theta=5 \pi / 4 \Rightarrow \theta^{\prime}=
$$

$$
\theta=-2 \pi / 3 \Rightarrow \theta^{\prime}=
$$

$$
\theta=140^{\circ} \Rightarrow \theta^{\prime}=
$$

$$
\theta=-800^{\circ} \Rightarrow \theta^{\prime}=
$$

Exercise 4:

Of course a calculator will provide approximate answers in decimal form and approximate answers for "unfriendly" angles.
$\sin (3 \pi / 4)=$
$\tan (5 \pi / 6)=$
$\cos (2 \pi / 3)=$
$\sec (5 \pi / 4)=$
$\sin (0.24)=$

