

Tangent t =

Cotangent t =

Periodic means what??

Back to the unit circle -- Answer each of these and come up with a conjecture.

$sin(\frac{\pi}{3})$	sin (<u>3π</u>) 4
$\sin\left(-\frac{\pi}{3}\right)$	$\sin(-\frac{3\pi}{4})$
$\cos(\frac{\pi}{3})$	$\cos\left(\frac{3\pi}{4}\right)$

cos(- <u></u>)	cos (- <u>3π</u>)
3	4

Exercise 1:

a. Evaluate the six trigonometric functions of t if $t = -5\pi/6$.

b. Evaluate the six trigonometric functions of *t* if $t = 2\pi/3$.

Practice these:

Exercise 2:

If $\sin t = -0.5$ and $~~\pi < t < 3\pi/2$, determine the other five trigonometric functions of t

Exercise 3:

If sec t = -5/3 and t is in the third quadrant, determine the other five trigonometric functions of t.

One more thing - A reference angle is

Positive

Acute Shares the terminal side with the original angle and has one side on the *x*-axis. If the angle is in radians, the reference angle is in radians. If the angle is in degrees, the reference angle is in degrees.

Every angle θ has a reference angle θ' .

Note: The quadrant angles have no reference angle.

Examples:

$$\theta = 5\pi/4 \implies \theta' = \qquad \qquad \theta = -2\pi/3 \implies \theta' =$$

 $\theta = 140^{\circ} \Rightarrow \theta' = \qquad \qquad \theta = -800^{\circ} \Rightarrow \theta' =$

Exercise 4:

Of course a calculator will provide approximate answers in decimal form and approximate answers for "unfriendly" angles.

 $sin(3\pi/4) =$

 $tan (5\pi/6) =$

 $cos (2\pi/3) =$

sec $(5\pi/4) =$

sin (0.24) =