

Math 1050 ~ College Algebra

9 Real Zeros of Polynomials

Learning Objectives

- Find possible (potential) rational zeros using the Rational Zeros Theorem.
- Find real zeros of a polynomial and their multiplicities.

We are now ready to determine the rational roots of a polynomial.

Rational Zeros Theorem

If f(x) is a polynomial that has integer coefficients, every rational zero of f(x) has the form $\frac{p}{q}$, where p is a factor of the constant term and q is a factor of the leading coefficient.

Ex 1: Use the Rational Zeros Theorem to determine the possible roots of these functions.

a)
$$f(x) = 2x^4 + x^3 - 7x^2 - 3x + 3$$

constant: 3
leading coefficient: 2
P factors of 3 are $\pm 1, \pm 3$
(a) factors of 2 are $\pm 1, \pm 2$
possible rational zeros of
f(x) are $\pm 1, \pm 1, \pm 1, \pm 3, \pm 3$
Simplifies to possible
factors $\pm 1, \pm 1, \pm 1, \pm 3, \pm 3$
Simplifies to possible
factors $\pm 1, \pm 1, \pm 1, \pm 3, \pm 3$
(b) $g(x) = 3x^3 + 3x^2 - 11x - 10$
(const: -10
l.c.: 3
(c) $\pm 1, \pm 2, \pm 5, \pm 10$
(c) $\pm 1, \pm 2, \pm 5, \pm 10$
 $\pm 1, \pm 2, \pm 5, \pm 10$

This rule may further help you in eliminating some of the options when determining the roots of a polynomial.

Descartes Rule of Signs

Given a polynomial function with real coefficients and a constant term not zero:

- The number of positive real roots is equal to the number of variations in signs of f(x) or less than that by an even number.
- The number of negative real roots is equal to the number of variations in signs of f(-x) or less than that by an even number.

Ex 2: Determine how many positive and negative roots these functions are likely to have.

a) $f(x) = 2x^4 + x^3 - 7x^2 - 3x + 3$ b) $g(x) = 3x^3 + 3x^2 - 11x - 10$ 2 variations of sign => 2 or 0 pos. roots ation in sign $f(-x)=2x^{4}-x^{3}$ -10 variations of sig 2 or 0 n-eg. roo 2 changes

Ex 3: Find all zeros for these functions.

a)
$$f(x) = 2x^4 + x^3 - 7x^2 - 3x + 3$$

possible roads: $41 \pm 4 \pm 3 \pm \frac{2}{2}$
 $2 = 0$ pos roads
 $2 = 0$ heg roads
 $-1| 2 = 1 - 7 - 3 = 3$
 $2 - 1 - 6 = 3$ (provided)
 $3 - 1 = -10$
 $2 - 1 - 6 = 3$ (provided)
 $4 = 3x^3 - 7x^2 - 3x + 3$
 $f(x) = 2x^4 + x^3 - 7x^2 - 3x + 3$
 $f(x) = (x + 1)(2x^3 - x^2 - 6x + 3)$
 $-5| 2 - 1 - 6 = 3 = 3 = 1$
 $2 - 7 + 15 - 4(2 = 96 + f(x))$
 $-5| 2 - 1 - 6 = 3 = 3 = 1$
 $2 - 7 + 15 - 4(2 = 96 + f(x))$
 $-5| 2 - 1 - 6 = 3 = 3 = 1$
 $2 - 7 + 15 - 4(2 = 96 + f(x))$
 $-\frac{1}{2}| 2 - 1 - 6 = 3 = 3 = 1$
 $2 - 7 + 15 - 4(2 = 96 + f(x))$
 $-\frac{1}{2}| 2 - 1 - 6 = 3 = 3 = 1$
 $2 - 2 - 5 = (40)$
 $-\frac{3}{2}| 2 - 1 - 6 = 3 = 3 = 3$ (so $16 + 6x$)
 $-\frac{3}{2}| 2 - 1 - 6 = 3 = 3 = 3$ (so $16 + 6x$)
 $-\frac{3}{2}| 2 - 1 - 6 = 3 = 3 = 3$ (so $16 + 6x$)
 $-\frac{3}{2}| 2 - 1 - 6 = 3 = 3 = 3$ (so $16 + 6x$)
 $-\frac{3}{2}| 2 - 1 - 6 = 3 = 3 = 3$ (so $16 + 6x$)
 $-\frac{3}{2}| 2 - 1 - 6 = 3 = 3 = 3$ (so $16 + 6x$)
 $-\frac{3}{2}| 2 - 1 - 6 = 3 = 3 = 3$ (so $16 + 6x$)
 $-\frac{3}{2}| 2 - 1 - 6 = 3 = 3 = 3$ (so $16 + 6x$)
 $-\frac{3}{2}| 2 - 1 - 6 = 3 = 3 = 3$ (so $16 + 6x$)
 $-\frac{3}{2}| 2 - 1 - 6 = 3 = 3 = 3$ (so $16 + 6x$)
 $-\frac{3}{2}| 2 - 1 - 6 = 3 = 3 = 3$ (so $16 + 6x$)
 $-\frac{3}{2}| 2 - 1 - 6 = 3 = -3 = 3$ (so $16 + 6x$)
 $-\frac{3}{2}| 2 - 1 - 6 = 3 = -3 = 3$ (so $16 + 6x$)
 $-\frac{3}{2}| 2 - 1 - 6 = 3 = -3 = 3$ (so $16 + 6x$)
 $-\frac{3}{2}| 2 - 1 - 6 = 3 = -3 = 3$ (so $16 + 6x$)
 $-\frac{3}{2}| 2 - 1 - 6 = 3 = -3 = 3$ (so $16 + 6x$)
 $-\frac{3}{2}| 2 - 1 - 6 = 3 = -3 = 3$ (so $16 + 6x$)
 $-\frac{3}{2}| 2 - 1 - 6 = 3 = -3 = 3$ (so $16 + 6x$)
 $-\frac{3}{2}| 2 - 1 - 6 = 3$
 $\frac{3}{2}| 2 - 1 - 6 = 3$
 $\frac{3}{2}|$

Multiplicity of Roots

A factor $(x-a)^k$, k>1, yields repeated zero x = a of multiplicity k.

Ex 4: Determine the roots and state the multiplicity of each. Write in factored form. $f(x) = x^5 - 8x^4 + 25x^3 - 38x^2 + 28x - 8$

