

$$
\begin{gathered}
-3 x+4 y=5 \\
2 x-y=-10 \\
{\left[\begin{array}{cc}
-3 & 4 \\
2 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
5 \\
-10
\end{array}\right]}
\end{gathered}
$$

$\sum_{k=1}^{m} k=\frac{m(m+1)}{2}$
$\sum_{k=0}^{n} z^{k}=\frac{1-z^{n+1}}{1-z}$

Math 1050 ~ College Algebra

9 Real Zeros of Polynomials

Learning Objectives

- Find possible (potential) rational zeros using the Rational Zeros Theorem.
- Find real zeros of a polynomial and their multiplicities.

We are now ready to determine the rational roots of a polynomial.

Rational Zeros Theorem
If $f(x)$ is a polynomial that has integer coefficients, every rational zero of $f(x)$ has the form $\frac{p}{q}$, where p is a factor of the constant term and q is a factor of the leading coefficient.

Ex 1: Use the Rational Zeros Theorem to determine the possible roots of these functions.
a) $f(x)=2 x^{4}+x^{3}-7 x^{2}-3 x+3$
constant: 3
leading coefficient: 2
(P) factors of 3 are $\pm 1, \pm 3$
(8) factors of 2 are $\pm 1, \pm 2$
possible rational zeros of
b) $g(x)=3 x^{3}+3 x^{2}-11 x-10$

Const: - 10
l.c.: 3

P $\pm 1, \pm 2, \pm 5, \pm 10$
(6) $\pm 1, \pm 3$
possible rational enos of $g(x)$
$f(x)$ are $\frac{ \pm 1}{ \pm 1}, \frac{ \pm 1}{ \pm 2}, \frac{ \pm 3}{ \pm 1}, \frac{ \pm 3}{ \pm 2}$ $\pm 1, \neq 2, * 5, \pm 10$, $\pm \frac{1}{3}, \pm \frac{2}{3}, \pm \frac{5}{3}, \pm \frac{10}{3}$
simplifies to possible factors $\neq 1, \pm \frac{1}{2}, \pm 3, \pm \frac{3}{2}$

This rule may further help you in eliminating some of the options when determining the roots of a polynomial.

Descartes Rule of Signs

Given a polynomial function with real coefficients and a constant term not zero:

- The number of positive real roots is equal to the number of variations in signs of $f(x)$ or less than that by an even number.
- The number of negative real roots is equal to the number of variations in signs of $f(-x)$ or less than that by an even number.

Ex 2: Determine how many positive and negative roots these functions are likely to have.

Ex 3: Find all zeros for these functions.

$\Rightarrow-1$ is root/ero of $f(x)$
$\Leftrightarrow(x+1)$ is a factor of $f(x)$

$$
f(x)=2 x^{4}+x^{3}-7 x^{2}-3 x+3
$$

$$
f(x)=(x+1)\left(2 x^{3}-x^{2}-6 x+3\right)
$$

$$
\begin{array}{l|llll}
-3 & 2 & -1 & -6 & 3 \\
-1 & 1 & -4
\end{array}
$$

$-\frac{1}{2} \left\lvert\, \begin{array}{ccc}2 & -1 & -6 \\ -1 & \frac{3}{2} \\ 2 & -2 & -5(\neq 0)\end{array} \Rightarrow \begin{array}{ll}\frac{5}{2} & \frac{1}{2} \text { is } 150 \text { NOT } \\ 2 & \frac{1}{2} f(x)\end{array}\right.$
$-\left.\frac{3}{2}\right|^{2}-1 \quad-6 \quad 3 \Rightarrow-\frac{3}{2}$ is NOT
$\begin{array}{lll}-3 & 6 & 0\end{array} \begin{array}{lll}-4 & 0 & 3\end{array} \begin{aligned} & \text { zero of } f(x)\end{aligned}$
$\frac{1}{2}\left(\begin{array}{rrrr}2 & -1 & -6 & 3 \\ & 1 & 0 & -3 \\ 2 & 0 & -6 & 0\end{array}\right.$
$\Rightarrow \frac{1}{2}$ is a root of $f(x)$
$\Leftrightarrow\left(x-\frac{1}{2}\right)$ is factor

$$
\begin{gathered}
f(x)=(x+1)\left(x-\frac{1}{2}\right)\left(2 x^{2}-6\right) \\
f(x)=(x+1)\left(x-\frac{1}{2}\right)(2)\left(x^{2}-3\right) \\
f(x)=2(x+1)\left(x-\frac{1}{2}\right)(x-\sqrt{3})(x+\sqrt{3})
\end{gathered}
$$

zeros of $f(x)$:

$$
x=-1, \frac{1}{2}, \sqrt{3},-\sqrt{3}
$$

$$
-2 \left\lvert\, \begin{array}{cccc}
3 & 3 & -11 & -10 \\
& -6 & 6 & 10 \\
& 3 & -3 & -5
\end{array} 0\right.
$$

$$
\Rightarrow-2 \text { is } 2010 \text { of } g(x)
$$

$$
\Leftrightarrow(x+2) \text { is factor of } g(x)
$$

$$
g(x)=(x+2)\left(3 x^{2}-3 x-5\right)
$$

Find zeros of $g(x)$:

$$
\begin{gathered}
(x+2)\left(3 x^{2}-3 x-5\right)=0 \\
x+2=0 \text { or } 3 x^{2}-3 x-5=0 \\
x--2 \quad x=\frac{3 \pm \sqrt{9-4(3)(-5)}}{2(3)} \\
\frac{x=\frac{3 \pm \sqrt{61}}{6}}{}{ }^{x}
\end{gathered}
$$

Multiplicity of Roots
A factor $(x-a)^{k}, k>1$, yields repeated zero $x=a$ of multiplicity k.
Ex 4: Determine the roots and state the multiplicity of each. Write in factored form. $f(x)=x^{5}-8 x^{4}+25 x^{3}-38 x^{2}+28 x-8$
Descartes Rule of Signs: (1) MK! 5 or 3 or 1 pos.roots

$$
\text { (2) } f(-x)=-x^{5}-8 x^{4}-25 x^{3}-38 x^{2}-28 x-8
$$

$$
\Rightarrow 0 \text { neg. roots }
$$

Possible Rational Roots/Zenos: $\frac{\text { factors of } 8}{\text { factors of } 1}$
$1,2,4,8$

$$
\begin{aligned}
& 1,2,4,8 \quad \text { factors of } 1 \\
& \begin{array}{l|lllll}
1 & -8 & 25 & -38 & 28 & -8 \\
& -7 & 18 & -20 & 8
\end{array} \Rightarrow f(x)=(x-1)\left(x^{4}-7 x^{3}+18 x^{2}-20 x\right. \\
& +8) \\
& \begin{array}{lllllll}
1 & -7 & 18 & -20 & 8 & 0
\end{array} \\
& \begin{array}{c}
1\left[\begin{array}{rrrrr}
1 & -7 & 18 & -20 & 8 \\
1 & -6 & 12 & -8 \\
1 & -6 & 12 & -8 & 0
\end{array}\right]
\end{array} \\
& \Rightarrow f(x)=(x-1)(x-1)\left(x^{3}-6 x^{2}+12 x-8\right)
\end{aligned}
$$

$$
\begin{aligned}
& 2 \left\lvert\, \begin{array}{cccc}
1 & -6 & 12 & -8 \\
& 2 & -8 & 8 \\
1 & -4 & 4 & 0
\end{array}\right. \\
& \left.\Rightarrow f(x)=(x-1)^{2}(x-2)\left(x^{2}-4 x+4\right) \quad 2 \left\lvert\, \begin{array}{ccc}
1 & -4 & 4 \\
2 & -4
\end{array}\right.\right] \\
& \Rightarrow f(x)=(x-1)^{2}(x-2)(x-2)(x-2) \\
& \Leftrightarrow f(x)=(x-1)^{2}(x-2)^{3} \\
& \begin{array}{c|c}
\text { root } & \text { multiplicity } \\
\hline 1 & 2 \\
\hline 2 & 3
\end{array}
\end{aligned}
$$

