

When solving for the zeros of a function, it helps if we can break the function down into factors. Synthetic division will be useful to us.

Factor Theorem

A polynomial $f(x)$ has a factor $(x-k)$ if and only if $f(k)=0$.

Remainder Theorem

If a polynomial $f(x)$ is divided by $(x-k)$, then the remainder $r=f(k)$.

Long division is ALWAYS useful for division of polynomials.
Synthetic division is only useful when dividing by $(x-k)$ where $k \in \boldsymbol{R}$.

Ex 1: Use long division to divide $\left(4 x^{3}+10 x^{2}-2 x-5\right)$ by $\left(2 x^{2}-1\right)$.

Ex 2: Divide $\left(x^{3}+4 x^{2}-3 x+2\right)$ by $(x-3)$ in two ways.

Long division

Synthetic division

Ex 3: Use synthetic division to compute this quotient.

$$
\left(5 x^{3}+6 x+8\right) \div(x+2)
$$

Write the result in the form $f(x)=(x-k)(q(x))+\mathrm{r}(x)$

Ex 4: Use the remainder theorem and synthetic division to show that ($\mathrm{x}+3$) is a factor of this function.

$$
\mathrm{f}(x)=3 x^{3}+5 x^{2}-3 x+27
$$

Ex 5: Use division to show that $2 / 3$ is a solution of $48 x^{3}-80 x^{2}+41 x-6=0$. Use the result to factor the polynomial completely and find all solutions.

