

A Polynomial Function and Vocabulary

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\ldots+a_{l} x+a_{0} .
$$

Degree

Leading Term

Leading coefficient

Constant

Ex1: Determine which of these are polynomial functions and identify the degree, the leading term, the leading coefficient and the constant of those that are.
a) $f(x)=\sqrt{5} x^{2}-4 x^{3}$
b) $f(x)=\sqrt[3]{x+2}+1$
c) $f(x)=-3(x-2)^{2}+4 x^{6}$
d) $f(x)=\frac{x-3}{x+2}$
e) $f(x)=\frac{6 x^{5}+3 x^{2}-1}{3}$
f) $f(x)=\pi$

Polynomial functions have the characteristic of being continuous and smooth.
The leading coefficient and the degree can tell us a lot about the graph of a polynomial, including its end behavior.
n is odd, $a>0 \quad n$ is even, $a<0$
n is even, $a>0$
n is odd, $a<0$

Ex 2: For each graph, guess at a likely degree, circle the x and y-intercepts, and identify the sign (+ or -) of the leading coefficient.

To graph a polynomial, it helps to determine the roots and the y-intercept.

Real Zeros of Polynomial Functions

Equivalent Statements: for $a \in \mathfrak{R}, f(x)$ a polynomial

- $x=a$ is a zero of $f(x)$.
- $x=a$ is a solution of $f(x)=0$.
- $(x-a)$ is a factor of $f(x)$.
- $(a, 0)$ is an x-intercept of the graph of $f(x)$.

Repeated Zeros

A factor $(x-a)^{k}$ for $k>1$ yields a repeated zero, $x=a$ of multiplicity k.

- If k is odd, the graph crosses the x-axis at $x=a$.
- If k is even, the graph touches the x-axis at $x=a$.

Intermediate Value Theorem

Let $a, b \in \boldsymbol{R}$ and $a<b$. If $f(x)$ is a polynomial and $f(x) \neq f(b)$, then over the interval $[a, b], f$ takes on every value between $f(a)$ and $f(b)$.

Ex3: For each function, describe the end-behavior, find all real zeros, including multiplicity, and the number of turning points on the graph.
a) $f(x)=(x+2)^{2}(x-1)^{3}$
b) $f(x)=-x(x+7)(x-3)^{2}$

Ex 4: Sketch the graph of $f(x)$ by looking at the leading coefficients, finding the zeros, and perhaps plotting more points.

$$
f(x)=-48 x^{2}+3 x^{4}
$$

An Application Problem

Ex5: The profit (in millions of dollars) for a sport cap manufacturer can be modeled by $P(x)=-x^{3}+4 x^{2}+x$, where x is the number of caps they produce (in millions). They currently produce 4 million caps, making a profit of $\$ 4,000,000$. What smaller number of caps could they make and still make the same profit?

