

A Polynomial Function and Vocabulary

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_1 x + a_0,$$
n must be a whole #
Degree
the highest exponent on x,
Leading Term
the term w/ the highest exponent
Leading coefficient
the term with no x in it
the term with no x in it

$$f(x) = 3x^2 + 5x + 7$$

$$f(x) = 3x^2 + 7$$

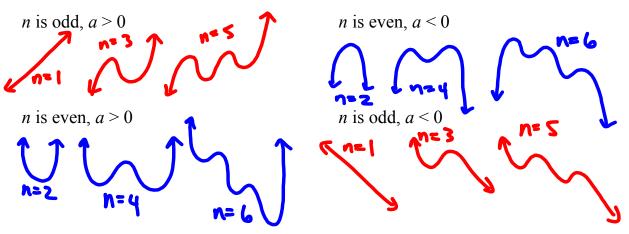
Ex1: Determine which of these are polynomial functions and identify the degree, the leading term, the leading coefficient and the constant of those that are.

a)
$$f(x) = \sqrt{5}x^2 - 4x^3$$

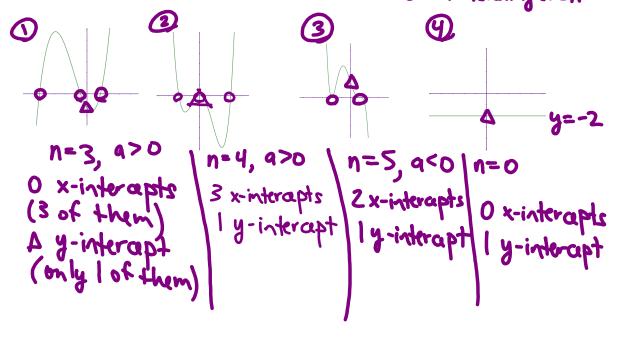
f(x) = $-4x^3 + (5x^2)$
is polynomial
 $f(x) = -4x^3 + (5x^2)$
is polynomial
 $f(x) = \frac{x-3}{x+2}$
this is NOT a polynomial
 $f(x) = \frac{x-3}{x+2}$
this is NOT a polynomial
 $f(x) = \frac{x-3}{x+2}$
this is NOT a polynomial
 $f(x) = 2x^5 + x^2 - \frac{1}{3}$
is polynomial
 $f(x) = 2x^5 + x^2 - \frac{1}{3}$
is polynomial
 $f(x) = 2x^5 + x^2 - \frac{1}{3}$
is polynomial
 $f(x) = 2x^5 + x^2 - \frac{1}{3}$
 $f(x) = 2x^5 + x^2 - \frac{1}{3}$
 $f(x) = 2x^5 + x^2 - \frac{1}{3}$
is polynomial
 $deg = 0, dt = \pi, dc = \pi, dc = \pi, dc = \pi, dc = \pi$
 $f(x) = 3(x-2)^2 = 3(x-2)(x-2)$
 $= 3(x^2 - 2x - 2x + 4)$
 $= 3(x^2 - 4x + 4)$
 $= 3(x^2 - 4x + 4)$
 $= 3x^2 + [2x -]2$

defree = \cap , $\int c = a$ Polynomial functions have the characteristic of being continuous and smooth.

The leading coefficient and the degree can tell us a lot about the graph of a polynomial, including its end behavior.



Ex 2: For each graph, guess at a likely degree, circle the x and y-intercepts, and identify the sign (+ or -) of the leading coefficient. Let a = leading coeff.



To graph a polynomial, it helps to determine the roots and the y-intercept.

Real Zeros of Polynomial Functions(roots = Zeros; theyic
Synonyms for
Synonyms for
Synonyms for
Polynomials)Equivalent Statements: for $a \in \Re$, f(x) a polynomial
x = a is a zero of f(x).Synonyms for
Polynomials)x = a is a zero of f(x).Polynomials)(x-a) is a factor of f(x).Polynomials)(a, 0) is an x-intercept of the graph of f(x).

Repeated Zeros

A factor $(x-a)^k$ for k > 1 yields a repeated zero, x = a of multiplicity k.

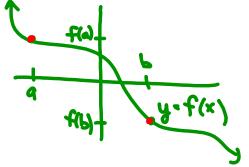
- If k is odd, the graph crosses the x-axis at x = a.
- If k is even, the graph touches the x-axis at x = a.

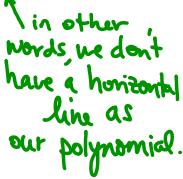
Intermediate Value Theorem

Let $a, b \in \Re$ and a < b. If f(x) is a polynomial and $f(x) \neq f(b)$, then over the interval [a,b], f takes on every value between f(a) and f(b).

(x-b) factor of f(x)

M ode

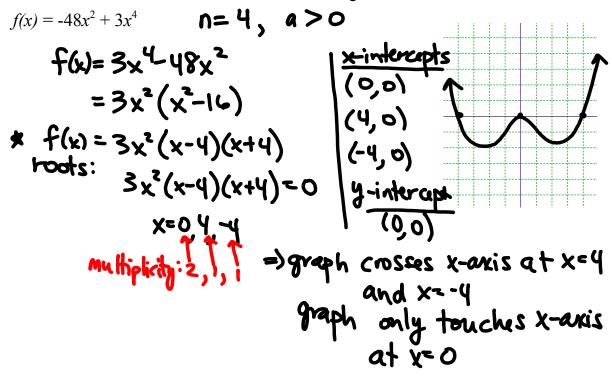




Ex3: For each function, describe the end-behavior, find all real zeros, including multiplicity, and the number of turning points on the graph.

a) $f(x) = (x+2)^{2}(x-1)^{3}$	if we multip	ly this out, well
n=5, a>0	get leadin	g term of ys
(a) on left, down;	on right, up	
(Þ) (x+2)*(X-1)*=	-0 (c) 2 (o multiplicity
x+2=0 x-1=0		2 (exponent on 3 (exponent on X-1)
		3 (or x+2)
(a) 2 turning pts		forent on
0) f(x) = -x(x+7)(x-3)		
if we multiply or -x(x)(x²)=-)	d, our leading	term will be
$-x(x)(x^2) = -y$	χ ⁴ 0	
(a) n=4, a<0,	on left & righ	t sides, graph goes r
	day C	
	auwy threine	
(b) - x(x+3)(x-	-SI2= 0	r (c) zwel hav likele star
(b) -x (x+7)(x·	-3) ² = 0	(c) zuos multiplicity
(b) -x (x+7)(x·	$-3)^{2} = 0$ += 0 x-3 = 0	(c) zeros multiplicity 0 1 (old)
**)(F+X) X- (d) F*× 0=X-	$(-3)^2 = 0$ $(-3)^2 = 0$	(c) zeros multiplicity 0 1 (old) -7 1 (old)
(b) -x (x+7)(x -x=0 x+7 (x=0-7,3)	$(-3)^2 = 0$ = 0 x-3 = 0 zeros of f	(c) zeros multiplicity 0 1 (old) -7 1 (old)
(b) -x (x+7)(x -x=0 x+7 (x=0-7,3)	$(-3)^2 = 0$ = 0 x-3 = 0 zeros of f	(c) zeros multiplicity 0 1 (old)
**)(F+X) X- (d) F*× 0=X-	$(-3)^{2} = 0$ = 0 x-3 = 0 zeros of f	(c) <u>zeros</u> multiplicity 0 1 (odd) -7 1 (odd) 3 2 (even)
(b) -x (x+7)(x -x=0 x+7 (x=0-7,3)	$(-3)^{2} = 0$ = 0 x-3 = 0 zeros of f	(c) <u>zeros</u> multiplicity 0 1 (odd) -7 1 (odd) 3 2 (even)
(b) -x (x+7)(x -x=0 x+7 (x=0-7,3)	$(-3)^{2} = 0$ = 0 x-3 = 0 zeros of f	(c) zeros multiplicity 0 1 (old) -7 1 (old)

Ex 4: Sketch the graph of f(x) by looking at the leading coefficient, finding the zeros, and perhaps plotting more points.



An Application Problem

Ex5: The profit (in millions of dollars) for a sport cap manufacturer can be modeled by $P(x) = -x^3 + 4x^2 + x$, where x is the number of caps they produce (in millions). They currently produce 4 million caps, making a profit of \$4,000,000. What smaller number of caps could they make and still make the same profit?

i.e. if
$$P=4$$
, what are the x-values that will
solve that eqn?
 $4=-x^3+4x^2+x$
 $0=-x^3+4x^2+x-4$
 $0=-x^2(x-4)+(x-4)$
 $0=(x-4)(-x^2+1)$
 $0=(x-4)(1-x^2)$
 $0=(x-4)(1-x)(1+x)$
 $x-4=0$ $1-x=0$ $1+x=0$
 $x=4,1,9$
can't make -1 caps
 \Rightarrow for same profit, the company can
make 1,000,000 caps.