

Math 1050 ~ College Algebra

6.5 Supplemental Video

Learning Objectives

- Practice completing the square.
- Develop the quadratic formula.
- Develop the formula for the vertex of a quadratic function.

$$
\sum_{k=0}^{n} z^{k}=\frac{1-z^{n+1}}{1-z}
$$

Completing the Square
For a good explanation of how to complete the square, see
http://www.mathsisfun.com/algebra/completing-square.html
This is useful in solving a quadratic equation and in putting that equation in standard form.
Ex 1: Solve by completing the square.

$$
\begin{array}{c|c|}
\text { a) } x^{2}-6 x-3=0 & \text { b) } 3 x^{2}-6 x-9=0 \\
\left(x^{2}-6 x+9\right)-3=0 & 3\left(x^{2}-2 x-3\right)=0 \\
(-6)^{2}=9 & 3\left(x^{2}-2 x+(-4)=0\right. \\
\left(x^{2}-6 x+9\right)-12=0 & 3\left((x-1)^{2}-4\right)=0 \\
(x-3)^{2}-12=0 & (x-1)^{2}-4=0 \\
(x-3)^{2}=12 & (x-1)^{2}=4 \\
(x-3)= \pm \sqrt{12} & x-1= \pm 2 \\
x=3 \pm \sqrt{12} & x=1 \pm 2 \\
x=3 \pm 2 \sqrt{3} & x=3,-1
\end{array}
$$

c) $2 x^{2}-5 x+4=0$

$$
\left(\frac{5}{213}\right)^{2}=\frac{25}{16}
$$

$$
2\left(x^{2}-\frac{5}{2} x+2\right)=0
$$

$$
2\left(x^{2}-\frac{5}{2} x+\frac{35}{16}+2-\frac{25}{16}\right)=0
$$

$$
2\left(\left(x-\frac{5}{4}\right)^{2}+\frac{7}{16}\right)=0
$$

$$
\left(x-\frac{5}{4}\right)^{2}+\frac{7}{16}=0
$$

$\left(x-\frac{5}{4}\right)^{2}=\frac{-7}{16}$ this cant
Ex 2: Put these equations in standard form. $y=\mathrm{a}(x-\mathrm{h})^{2}+$

$$
\begin{aligned}
& \text { a) } y=x^{2}+2 x-2 \\
& y=x^{2}+2 x+1-2-1 \\
& y=(x+1)^{2}-3
\end{aligned}
$$

note: vertex $(-1,-3)$

$$
\text { b) } \begin{aligned}
& y=2 x^{2}-4 x-3 \\
& y=2\left(x^{2}-2 x\right)-3 \\
& y=2\left(x^{2}-2 x+1\right) \\
& y=2(x-1)^{2}-5
\end{aligned}
$$

$$
\text { c) } \begin{aligned}
& y=-1 / 2 x^{2}-3 x+5 \\
& y=-\frac{1}{2}\left(x^{2}+6 x\right)+5 \\
& y=-\frac{1}{2}\left(x^{2}+6 x+9\right) \\
& \quad+5-9\left(\frac{1}{2}\right) \\
& y=-\frac{1}{2}(x+3)^{2}+5+\frac{9}{2} \\
& y=-\frac{1}{2}(x+3)^{2}+\frac{19}{2}
\end{aligned}
$$

Deriving the Quadratic Formula
If $a x^{2}+b x+c=0, a \neq 0$, then $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
Ex 3: Solve this equation for x, if a, b and c are constants. $\quad(a \neq 0)$

$$
\left.\begin{array}{l}
a x^{2}+b x+c=0 \\
a\left(x^{2}+\frac{b}{a} x+\frac{c}{a}\right)=0 \\
a\left(x^{2}+\frac{b}{a} x+\frac{b^{2}}{4 a^{2}}+\frac{c}{a}-\frac{b^{2}}{4 a^{2}}\right)=0 \\
\left(x^{2}+\frac{b}{a} x+\frac{b^{2}}{4 a^{2}}\right)+\left(\frac{c \cdot 4 a}{a \cdot 4 a} b^{2}\right. \\
\left(x+\frac{b}{2 a}\right)^{2}
\end{array}\right)=0 .\left(\frac{4 a c-b^{2}}{4 a^{2}}\right)=0 .
$$

Deriving the Formula for the Vertex
 y-intercept is at $(0, c)$

$$
\begin{aligned}
& \begin{array}{l}
c=a x^{2}+b x+c \\
0=a x^{2}+b x \\
D=x(a x+b) \\
x=0 \text { or } a x+b=0
\end{array} \quad \begin{array}{l}
a x=-b \\
x=\frac{-b}{a}
\end{array} \quad \Rightarrow x-c o o r d .
\end{aligned}
$$

of vertex is
midpt of the two x-values

$$
\int_{(?, c)}^{=\left(\frac{b}{a}, c\right)}
$$ midpt of the two x-values

0 and $\frac{-h}{a} \Rightarrow x$ ford of vertex is $\frac{-b}{2 q}$
Ex 4: Determine the vertex for each of these using the above method.

$$
\begin{aligned}
& \text { a) } y=x^{2}+2 x-2 \\
& a=1, b=2, c=-2 \\
& x \text { ord of vertex } \\
& x=\frac{-b}{2 a}=\frac{-2}{2(1)}=-1 \\
& y=(-1)^{2}+2(-1)-2 \\
& =1-2-2=-3 \\
& \text { vertex }(-1,-3) \\
& \begin{array}{l}
\text { b) } y=2 x^{2}-6 x-3 \\
a=2, b=-b, c=-3
\end{array} \\
& \text { c) } y=-1 / 2 x^{2}-3 x+5 \\
& a=-\frac{1}{2}, b=-3, c=5 \\
& x=\frac{-(-3)}{2\left(-\frac{1}{2}\right)}=\frac{3}{-1}=-3 \\
& y=-\frac{1}{2}(-3)^{2}-3(-3)+5 \\
& y=-\frac{9}{2}+9+5=\frac{19}{2} \\
& \text { vertex }\left(-3, \frac{19}{2}\right)
\end{aligned}
$$

